
# **Post-Quantum Cryptography (PQC) Adoption Measured at the** National Center for Supercomputing Applications (NCSA)

Jakub Sowa<sup>1</sup>, Bach Hoang<sup>2</sup>, Phuong Cao<sup>1</sup> <sup>1</sup>National Center for Supercomputing Applications, UIUC, <sup>2</sup>Department of Mathematics, UIUC

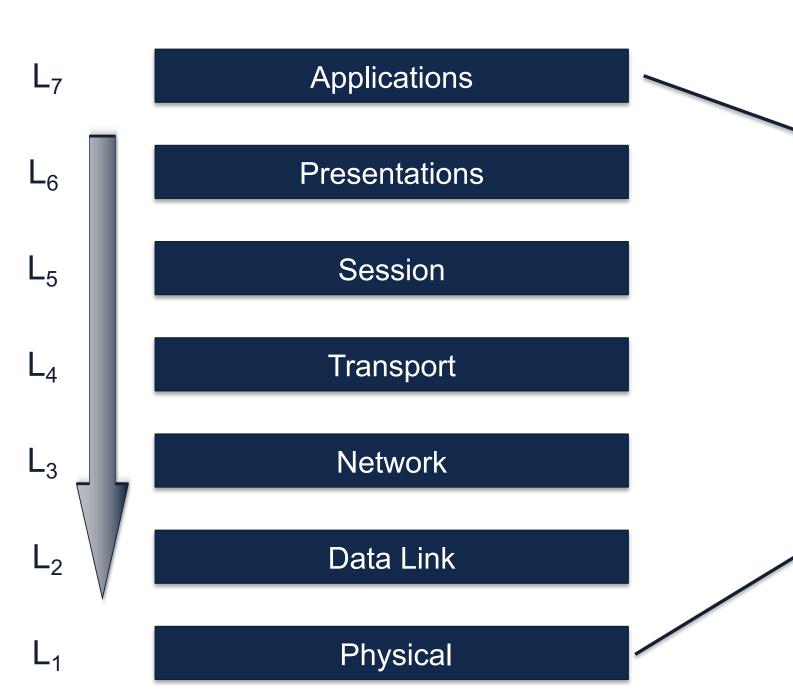
## Quantum computing opens new challenges for cryptography

**Top Qubit Computers** (of gate-model QCs)



## PQC in RDP and DNS is nearly unused

- Remote Desktop Protocol (RDP):
  - Can be configured to use TLS encryption and Network-layer authentication but only on Windows 11
  - Out of 26 connections in sample data, only 2 used both encryption and authentication
- Domain Name System (DNS):
  - Not encrypted at all by default -- anyone can see what websites you try to visit, even on the NCSA network
    - Can enable HTTPS encryption on some browsers (Firefox, Chrome etc.)
    - Can also configure DNS to encrypt DNS-over-TLS (DoT)


## Minimal of PQC present in Secure Shell

| Encryption Algorithm<br>aes256-gcm@openssh.com<br>aes128-ctr<br>chacha20-poly1305@openssh.com<br>aes128-gcm@openssh.com<br>aes256-ctr<br>aes128-cbc<br>3des-cbc*                                                                            | Occurrences           1686 (66.93%)           454 (18.02%)           188 (7.46%)           156 (6.19%)           31 (1.23%)           2 (0.08%)           1 (0.04%)    | <ul> <li>99.92% of all SSH traffic was not secur<br/>adversaries</li> </ul>                                                                                                                                    | <b>e</b> against quantur                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| MAC Algorithm<br>hmac-sha2-256-etm@openssh.com<br>hmac-sha2-256<br>umac-128-etm@openssh.com<br>umac-64-etm@openssh.com<br>hmac-sha1<br>hmac-sha2-512<br>Host Key Algorithm                                                                  | Occurrences           1844 (73.20%)           457 (18.14%)           154 (6.11%)           33 (1.31%)           17 (0.67%)           13 (0.52%)                        | <ul> <li>sntrup761x25519: Streamlined NTRU F</li> <li>A hybrid classical-PQ key exchange<br/>by default in OpenSSH v9.0 and ab</li> <li>Over 83% of server-side SSH protocol v<br/>2019 and earlier</li> </ul> | e algorithm availal<br>ove as of <b>2022</b>                                                                                       |
| ecdsa-sha2-nistp256<br>ssh-ed25519<br>ssh-rsa*                                                                                                                                                                                              | $\begin{array}{c} 1275 \ (50.62\%) \\ 1233 \ (48.95\%) \\ 5 \ (0.20\%) \end{array}$                                                                                    |                                                                                                                                                                                                                |                                                                                                                                    |
| rsa-sha2-512                                                                                                                                                                                                                                | 4 (0.16%)                                                                                                                                                              | Key Exchange Algorithm                                                                                                                                                                                         | Occurrences                                                                                                                        |
| Key Exchange Algorithm<br>curve25519-sha256<br>curve25519-sha256@libssh.org<br>diffie-hellman-group-exchange-sha256<br>diffie-hellman-group1-sha1**<br>sntrup761x25519-sha512@openssh.com*<br>diffie-hellman-group14-sha1<br>= post-quantum | Occurrences           2030 (80.59%)           473 (18.78%)           6 (0.24%)           5 (0.20%)           2 (0.08%)           2 (0.08%)           not secure even r | curve25519-sha256<br>curve25519-sha256@libssh.org<br>diffie-hellman-group-exchange-sha256<br>diffie-hellman-group1-sha1**<br>sntrup761x25519-sha512@openssh.com*                                               | $\begin{array}{c} 2030 \ (80.59\%) \\ 473 \ (18.78\%) \\ 6 \ (0.24\%) \\ 5 \ (0.20\%) \\ 2 \ (0.08\%) \\ 2 \ (0.08\%) \end{array}$ |

Given a large integer 3579423417972586877499180783256845540300377802422822619353 What are its only two prime factors? Given A and B, find x:  $B^{x} = A$ With Shor's Algorithm on viable QCs

timization problems, and could not perform Shor's algorithn

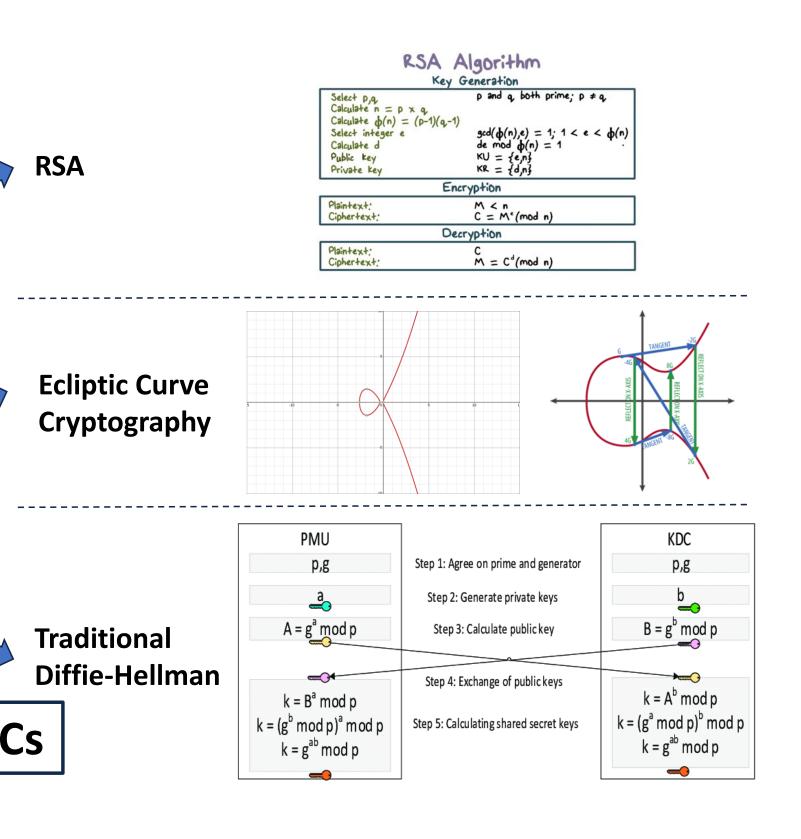
able m



## PQC used in Transport Layer Security (TLS) is limited

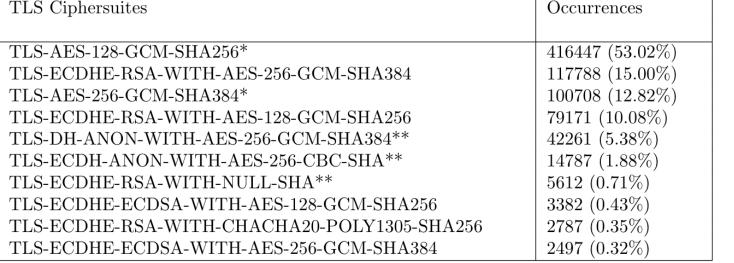
- About 65% of connections were using TLSv1.3; about 35% were TLSv1.2 • Many unsecure cipher suites were in use – 4 had over 1000 connections!
- No standard version of TLS has <u>any</u> PQC -- none at NCSA either • Many designs in the works by the IETF & NIST; some companies even trying to
- integrate PQC into their TLS
- The difficulty to even adopt TLS v1.3 internet-wide foreshadows PQC adoption as well

| TLS Ciphersuite |
|-----------------|
|                 |
| TLS-AES-128-G   |
| TLS-ECDHE-R     |
| TLS-AES-256-G   |
| TLS-ECDHE-R     |
| TLS-DH-ANON     |
| TLS-ECDH-AN     |
| TLS-ECDHE-R     |
| TLS-ECDHE-E     |
| TLS-ECDHE-R     |
| TIS ECDHE E     |


Table 2: A list of the top 10 cipher suites found in sample TLS connection data (\*in TLSv1.3, \*\*considered non-secure)






#### Quantum algorithms can break traditional encryptions

**NCSA** 



#### **PQC** observatory analytics workflow

- Layer 7: Application layer
  - Remote Desktop Protocol (RDP)
  - Domain Name System (DNS)
  - Secure Shell (SSH)
- Layer 4: Transport layer
  - Transport Layer Security (TLS)



### Data is gathered from NCSA network metadata

- NCSA
- of certain protocols



### **Potential Solutions**

- once TLS has PQC
- A TLS v2.0, introducing PQC by default

  - adversaries

## **Future Work**

- of PQC
- "cipher suite downgrade attacks"



Sampled a few hours of <u>network metadata</u> generated by Zeek at

• No information beyond metadata was used • Zeek logs were parsed in Python for analysis of network traffic

|      | th_success auth_att<br>remote_location.regio |               |              |        |       |                    |                      |                   | cipher_a<br>ion.latit |                              |               |
|------|----------------------------------------------|---------------|--------------|--------|-------|--------------------|----------------------|-------------------|-----------------------|------------------------------|---------------|
|      | ring                                         | string        | string       | stri   | .ng   | string             | string               | string            | string                | string                       | strin         |
|      | 56                                           | -<br>ssh-o    | 0<br>ed25519 |        |       |                    | -libssh_<br>b8:19:fc |                   |                       |                              |               |
| zeék | ecds                                         |               | 1<br>istp256 |        |       |                    | -OpenSSH<br>99:ff:52 |                   |                       |                              |               |
|      |                                              |               | 0            |        |       | SSH-2.0            | -check_s             | sh_2.3.3          | SSH-2.0               | -OpenSSH_                    | _7.4          |
|      | ecds                                         | T<br>a-sha2-n | 1<br>istp256 | -<br>e | e6:42 | SSH-2.0<br>:f2:b0: | -OpenSSH<br>99:ff:52 | _8.6<br>:86:34:1: | SSH-2.0<br>L:8c:61:9  | - OpenSSH_<br>98 : 39 : ad : | _7.4<br>:ef - |

More generally, make sure to keep software like SSH protocols and browsers updated to use the safest cryptography

Potentially configure most network protocols to run over TLS,

A TLS Termination Proxy can be used as a wrapper around current infrastructure to make it easier to secure traffic

Streamlining and simplifying cryptography and security

Securing all network traffic even against quantum

Creating a web tool that measures Post-Quantum Cryptography at NCSA and other organizations: "Network of PQC telescopes"

Creating a tool to quickly scan a network and analyze its usage

• Analyzing the risk of and figuring how to mitigate Post-Quantum





