Fermilab Science

Risk Management in Major International Projects at Fermilab and CERN

Lucas Taylor, Fermilab

30 June 2023

NSF Research Infrastructure Workshop, Washington DC

Who am I?

Currently

- Fermilab Risk Manager leading the Lab's risk management program for a project portfolio of \$5.8B
- Risk Manager for LBNF-DUNE, PIP-II, CMS projects
- Associate Project Manager (cost, schedule, risk) for the HL-LHC CMS Upgrades project* at CERN * \$320M of DOE/NSF funding, including \$43M of Phase 1 Upgrades

Background

2

- PhD Particle Physicist
 - CMS, L3, Pierre Auger Observatory, UA1 experiments
- Project Management Professional (PMP)

Fermilab is America's premier laboratory for particle physics and accelerator research, supported by the U.S. Department of Energy

Outline

- Fermilab's portfolio of projects
- Risk management process and best practices
- How we identify and analyse risks
- Risk mitigation, responses, monitoring and control
- Lessons learned
- Q&A

Total Project Cost (\$B)		(\$B)	
LBNF-DUNE	Long Baseline Neutrino Facility / Deep Underground Neutrino Expt.	3.3	1
PIP-II	Proton Improvement Plan II (Fermilab accelerator upgrades)	1.0	<
HL-LHC AUP	US upgrades of the Large Hadron Collider at CERN	0.5	
HL-LHC CMS	US upgrades of the CMS Detector at CERN	0.5	
Mu2e	Muon to Electron Conversion experiment	0.3	
Other projects	SBN, MAGIS-100, ADMX-EFR	0.1	
Total - Science Projects		5.1	
UIP	Utilities Improvement Project	0.3	
ACORN	Accelerator Controls Operations Research Network	0.1	
IERC	Integrated Engineering Research Center	0.1	
GPPs / AIPs	General Plant Projects and Accelerator Improvement Projects	0.1	
Partner projects	Contributions to partner projects: LCLS-II-HE, Super-CDMS, PPU	0.1	
Total - Other Projects		0.7	
Fermilab Projects - Total		5.8	

PIP-II will be the "first gear" of the Fermilab accelerator complex and power the world's most intense beam of high-energy neutrinos for DUNE. The heart of PIP-II is a **215-meter-long particle accelerator**, featuring major contributions from **international partners** and the latest superconducting radio-frequency technology developed at Fermilab.

Total Project Cost (\$B)		(\$B)	
LBNF-DUNE	Long Baseline Neutrino Facility / Deep Underground Neutrino Expt.	3.3	I
PIP-II	Proton Improvement Plan II (Fermilab accelerator upgrades)	1.0	
HL-LHC AUP	US upgrades of the Large Hadron Collider at CERN		
HL-LHC CMS	US upgrades of the CMS Detector at CERN	0.5	
Mu2e	Muon to Electron Conversion experiment	0.3	
Other projects	SBN, MAGIS-100, ADMX-EFR	0.1	
Total - Science Projects		5.1	
UIP	Utilities Improvement Project	0.3	
ACORN	Accelerator Controls Operations Research Network	0.1	
IERC	Integrated Engineering Research Center	0.1	
GPPs / AIPs	General Plant Projects and Accelerator Improvement Projects	0.1	
Partner projects	Contributions to partner projects: LCLS-II-HE, Super-CDMS, PPU	0.1	
Total - Other Projects		0.7	
Fermilab Projects - Total		5.8	

5

Long Baseline Neutrino Facility (LBNF) project excavates enormous caverns about 1 mile underground in South Dakota and provides cryogenics infrastructure

LBNF provides the **enormous caverns** and **cryogenics infrastructure** for the **DUNE detector** deep underground at Sanford Lab. This includes the excavation of 800,000 tons of rock. It will also build structures at Fermilab to send neutrinos through stone and earth to South Dakota — no tunnel needed.

Total Project Cost (\$		(\$B)	
LBNF-DUNE	Long Baseline Neutrino Facility / Deep Underground Neutrino Expt.	3.3	0
PIP-II	Proton Improvement Plan II (Fermilab accelerator upgrades)	1.0	<
HL-LHC AUP	US upgrades of the Large Hadron Collider at CERN		
HL-LHC CMS	US upgrades of the CMS Detector at CERN	0.5	
Mu2e	Muon to Electron Conversion experiment	0.3	
Other projects	SBN, MAGIS-100, ADMX-EFR	0.1	
Total - Science Projects		5.1	
UIP	Utilities Improvement Project	0.3	
ACORN	Accelerator Controls Operations Research Network	0.1	
IERC	Integrated Engineering Research Center	0.1	
GPPs / AIPs	General Plant Projects and Accelerator Improvement Projects	0.1	
Partner projects	Contributions to partner projects: LCLS-II-HE, Super-CDMS, PPU	0.1	
Total - Other Projects		0.7	
Fermilab Projects - Total		5.8	

6

Total Project Cost (\$B)		(\$B)
LBNF-DUNE	Long Baseline Neutrino Facility / Deep Underground Neutrino Expt.	3.3
PIP-II	Proton Improvement Plan II (Fermilab accelerator upgrades)	1.0
HL-LHC AUP	US upgrades of the Large Hadron Collider at CERN	0.5
HL-LHC CMS	US upgrades of the CMS Detector at CERN	
Mu2e	Muon to Electron Conversion experiment	0.3
Other projects	SBN, MAGIS-100, ADMX-EFR	0.1
Total - Science Projects		5.1
UIP	Utilities Improvement Project	0.3
ACORN	Accelerator Controls Operations Research Network	0.1
IERC	Integrated Engineering Research Center	0.1
GPPs / AIPs	General Plant Projects and Accelerator Improvement Projects	0.1
Partner projects	Contributions to partner projects: LCLS-II-HE, Super-CDMS, PPU	0.1
Total - Other Projects		0.7
Fermilab Projects - Total		5.8

HL-LHC Accelerator Upgrades

project delivers US contributions to CERN's Large Hadron Collider

HL-LHC CMS Upgrades project delivers US contributions to the CMS experiment at CERN Discovery of Nobel prizewinning Higgs boson in 2012

‡ Fermilab

Total I	Project Cost	(\$B)	
LBNF-DUNE	Long Baseline Neutrino Facility / Deep Underground Neutrino Expt.	3.3	
PIP-II	Proton Improvement Plan II (Fermilab accelerator upgrades)	1.0	
HL-LHC AUP	US upgrades of the Large Hadron Collider at CERN	0.5	
HL-LHC CMS	US upgrades of the CMS Detector at CERN		
Mu2e	Muon to Electron Conversion experiment	0.3	
Other projects	SBN, MAGIS-100, ADMX-EFR	0.1	
Total - Science Projects		5.1	
UIP	Utilities Improvement Project	0.3	
ACORN	Accelerator Controls Operations Research Network	0.1	
IERC	Integrated Engineering Research Center	0.1	C
GPPs / AIPs	General Plant Projects and Accelerator Improvement Projects	0.1	
Partner projects	Contributions to partner projects: LCLS-II-HE, Super-CDMS, PPU	0.1	
Total - Other Projects		0.7	
Fermila	b Projects - Total	5.8	

8

Risk Management at Fermilab

Fermilab Risk Manager

Responsible for developing and supporting risk processes, tools, training, workshops, reviews etc.

Definition [ISO 31000]

Risk: Effect of uncertainty on objectives

 Threats may or may not happen, and have <u>negative</u> impacts → we aim to minimize them

Example: Magnet damaged in transit

 Opportunities may or may not happen, and have positive impacts → we aim to maximize them

Example: Vendor develops better or cheaper Si chip

Uncertainties may have positive or negative impacts → we aim to manage them

Examples: Inflation, foreign exchange rates, or commodity prices may fluctuate up and down

Some uncertainties have 100% probability

Project Risk Management Process

11 2023-06-30 Lucas Taylor Risk Management in Major International Projects at Fermilab and CERN NSF RIW 2023

Project Risk Management Planning

Goal: Develop the overall risk management strategy, establish processes, assign responsibilities

Many standard operating procedures help mitigate risk

- ES&H, security...
- Engineering, QA/QC...
- Finance, procurement, legal...

Risk management best practices

[PMBOK] Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", 7th Edition, 2021. ANSI/PMI 99-001-2021. https://www.pmi.org/pmbok-guidestandards/foundational/ombok GAO

[GAO] Best Practices for: Project Cost, https://www.gao.gov/products/gao-20-195g; and Project Schedules https://www.gao.gov/products/gao-16-89g)

DOE 413.3b / NSF RIG

[DOE] Risk Management Guide for DOE 0 413.3b projects, https://www.directives.doe.gov/directives-documents/400series/0413.3-EGuide-07a-chg2-ltdchg

[NSF] NSF Research Infrastructure Guide, https://www.nsf.gov/publications/pub_summ.isp?ods_key=nsf21107

Fermilab

[FNAL] Fermilab Risk Management Procedures, PPP-doc-65, on request from taylorl@fnal.gov

Project's risk approach is described in Project Execution Plan and Risk Mgmt. Plan

Risk Identification

Goal: produce a list of risks that could impact the project's objectives, in terms of scope, cost, schedule, safety...

How do we identify risks?

Risk workshops

all stakeholders: management, technical, admin, external experts

Risk interviews

Open questions e.g. "what keeps you awake at night?"

Review project documents

technical designs, costs, schedules...

Review Risk Breakdown Structure to ensure wide risk coverage

	External
th needs. Int or wrong. Planning meth is intercounter.	Collaborators Anter within the Project log, Chiveneties at Labol Ball with Instrumental partners (Agencies, Labo, Scioettife Co- Chiverentin, Industry)
ulitic, or de not	Facilities Expected lacitors are secretable or indepart to g yes IT reserves. Further, and dataged or observice comp

_

Regulato

Vendor

Open risks for Fermilab projects 977 risks

Qualitative Risk Analysis

Risk Register data – Excel or web DB

General risk metadata

Risk ID, Title, Project, Risk Type, RBS, Owner, WBS, Status, Start Date, End Date ...

- Summary IF THEN statement of cause → effect. Example:
 IF magnet is damaged in transit
 THEN repair work results in delay and cost increase
- Risk Mitigations pre-emptive actions in baseline plans
- Risk Responses that only are executed if the risk occurs
- **Risk Probability** from 0% 100% (post-mitigation)
- Impacts: Technical, Cost and Schedule (delays)
 1-point (single value), 2-point (range), or 3-point (triangle)
 - How probability and impacts were estimated and which work activities are impacted

Risk Ranking

- Risks are ranked using a 2-D matrix of Probability vs. Impact
 - High rank: Potential failure to meet project goals → Project Director / Manager
 - Medium rank: Significant impact on objective(s) → L2 Manager
 - Low rank: Modest impact on objective(s)
 → L3 Manager
- Risk impact thresholds are tailored according to the total project cost (TPC) and the project duration

Open risks for Fermilab projects (141 high rank)

- External risks (75 high rank) are generally hard to mitigate
 - Examples: escalation, exchange rates, commodity prices, Covid-19, supply chains, labor market, construction market, taxes, customs duties, partner/vendor delays
 - Assess impacts using data sources such as: Federal Reserve banks, Dept. of Commerce, Dept. of Labor, industry sources, past experience, expert judgement
- Technical risks (33 high rank) are project-specific but with common themes
 - Examples: ES&H issues, failure to meet specifications for technical performance or reliability, or changes in requirements or interfaces
- Management risks (33 high rank)
 - Examples: unavailability of personnel or skills, funding shortfalls or delays (e.g. CRs), logistics, damage in transit

Quantitative Risk Analysis

Fermilab

21 2023-06-30 Lucas Taylor Risk Management in Major International Projects at Fermilab and CERN NSF RIW 2023

Quantitative Risk Analysis

Three types of contingency

• Budget Contingency [NSF, p 6.2.3-1]

is budget set aside to cover uncertainties in cost estimates and the cost impacts of risks

Schedule Contingency

is time set aside to cover duration estimate uncertainties and schedule impacts of risks

Scope Contingency

is scope that can be dropped if the project is running very late or over budget

typically ~10% of total scope

Management manages risks and contingency to ensure project will finish on time and within budget

🚰 Fermilab

Risk Response Planning

‡ Fermilab

Strategies for handling risk threats

- **Risk mitigations** reduce the likelihood or impact of a risk threat before it happens
- **Risk avoidance** eliminates a risk by changing the base plan
- **Risk transfer** shifts responsibility for the impacts to a third party
- **Risk acceptance** is doing nothing because there is no cost-effective mitigation, or the risk is in the far future
- **Risk responses** are actions taken after a risk occurs to manage the consequence

- **Example**: test pre-production items before commencing full production
- **Example**: risk of vendor failing is avoided by placing contracts with multiple vendors
- **Example**: purchase insurance for items that could be lost or damaged in transit
- **Example**: accept that future exchange rates are beyond the control of the project

🚰 Fermilab

• **Example**: repair a magnet that was damaged in transit

Similar (converse) strategies apply to risk opportunities

Risk Monitoring and Control

Goal: Monitor and update risks, manage mitigations and responses, retire risks, identify new risks, report on risk, improve risk processes

Typical approach

- Project Manager is ultimately responsible for risk management
- Risk Management Board comprises the core management team, ensuring that risk is an integral part of decision making
- Risk Owners execute risk
 mitigations and response plans
- **Risk Manager** supports risk activities, risk register, MC analysis

Lessons learned

Start early with risk and follow best practices

Schedule risk is often more challenging than cost risk

Carefully monitor critical path, risk-adjusted finish dates, float and schedule contingency

Be wary of low probability, high impact risks – impacts can be hard to handle if the risk occurs

Rule of thumb #2:

Schedule contingency (at 90% CL) is typically 25 – 35% of remaining duration (~3-4 months per year of duration)

Fermilab

Thank you

2023 RESEARCH INFRASTRUCTURE WORKSHOP JUNE 27 - 30, 2023 • WASHINGTON, DC

