

Computing For Big Data Experiments

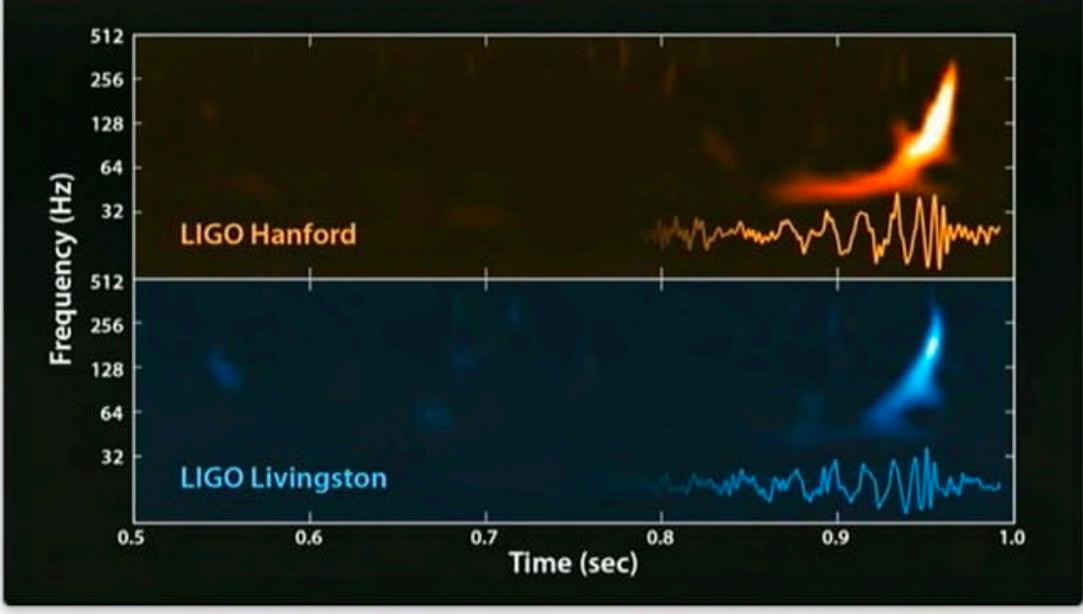
Philip Harris MIT

LHC Challenge² Can we process every collision?

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-20 03:55:39.135168 GMT Run / Event / LS: 305313 / 624767783 / 361

- LHC collides 40 Million times per second
- Each collision is about 10 MB of data 400 Tera Bytes Per Second

LIGO Challenge: Can we find all mergers



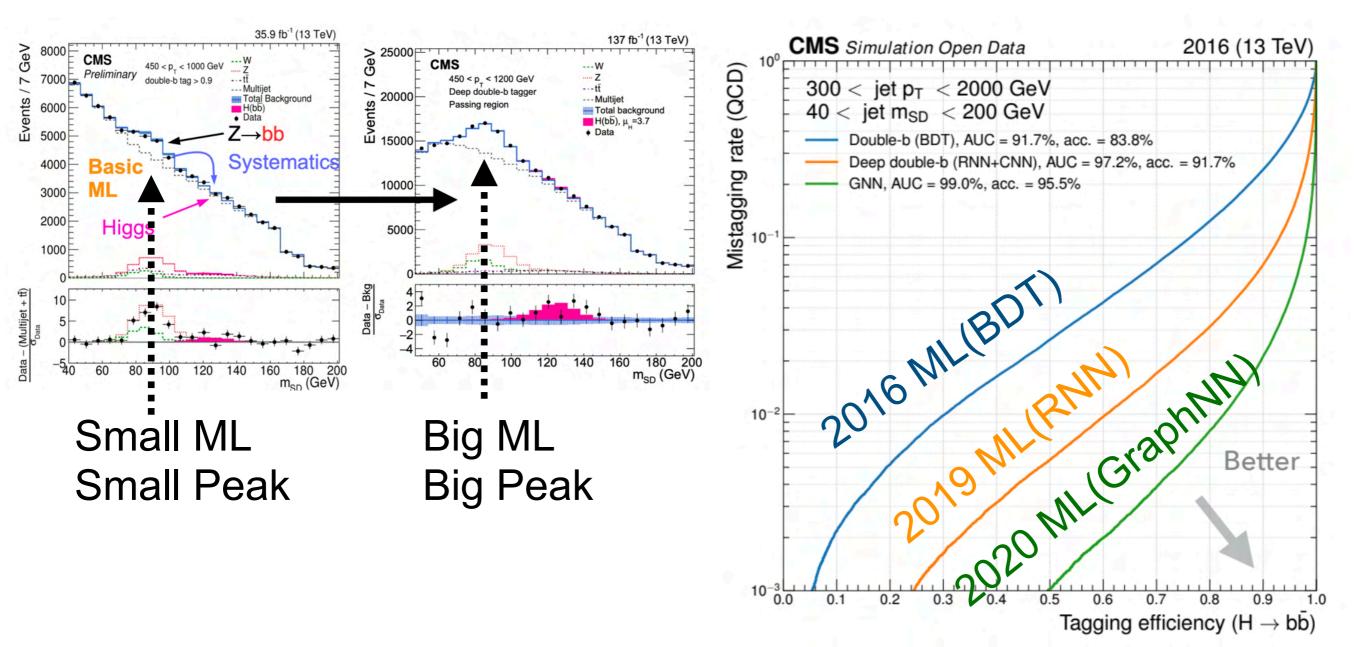
LIGO has 10⁵ channels at 1024 Hertz

• Looking for subtle signals hidden in the noise

Real-time Detailed (10k core) analysis every millisecond

An Angle on AI revolution

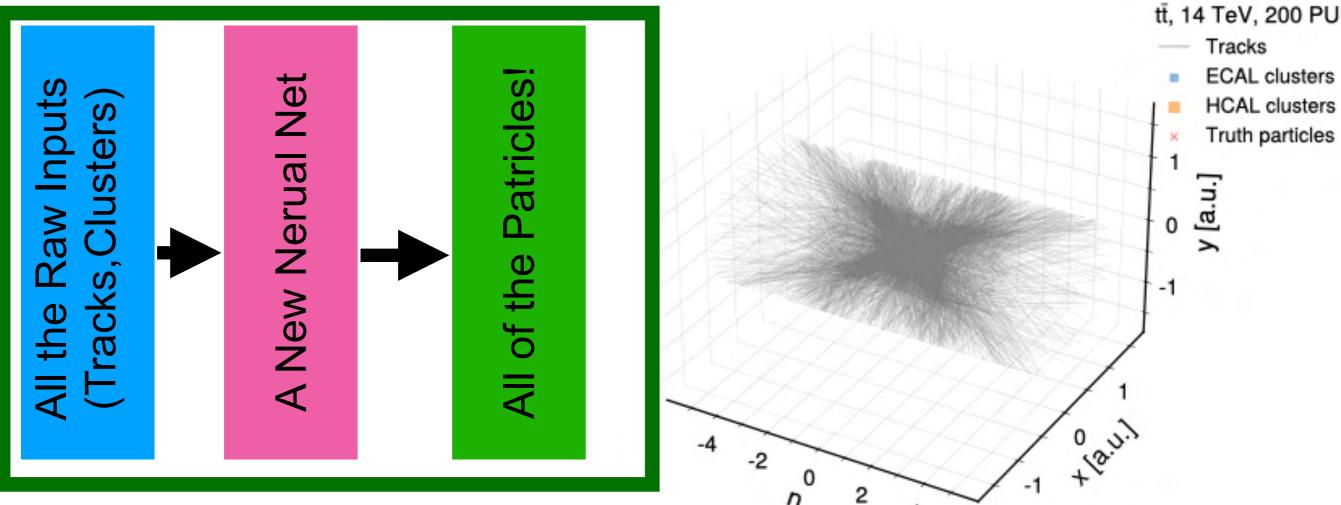
- Things are starting to change in the way we compute
 - ML algorithms have the ability to go beyond algorithms
 - This is also b/c GPUs have helped to parallelize computation



What does this mean?

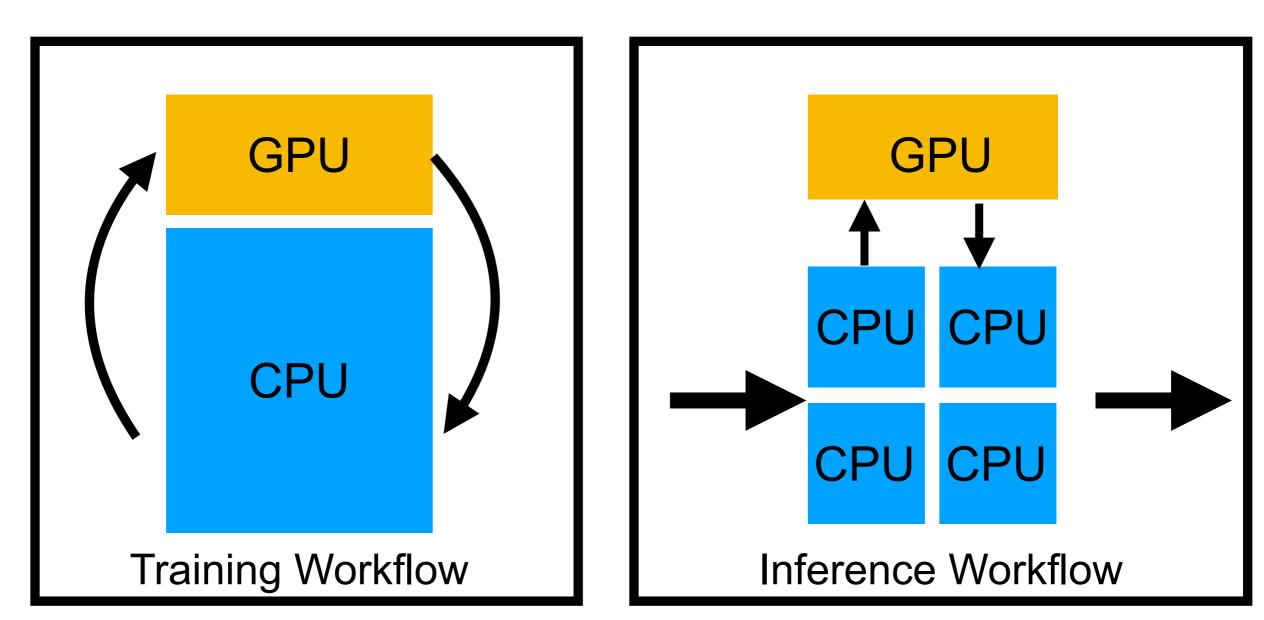
5

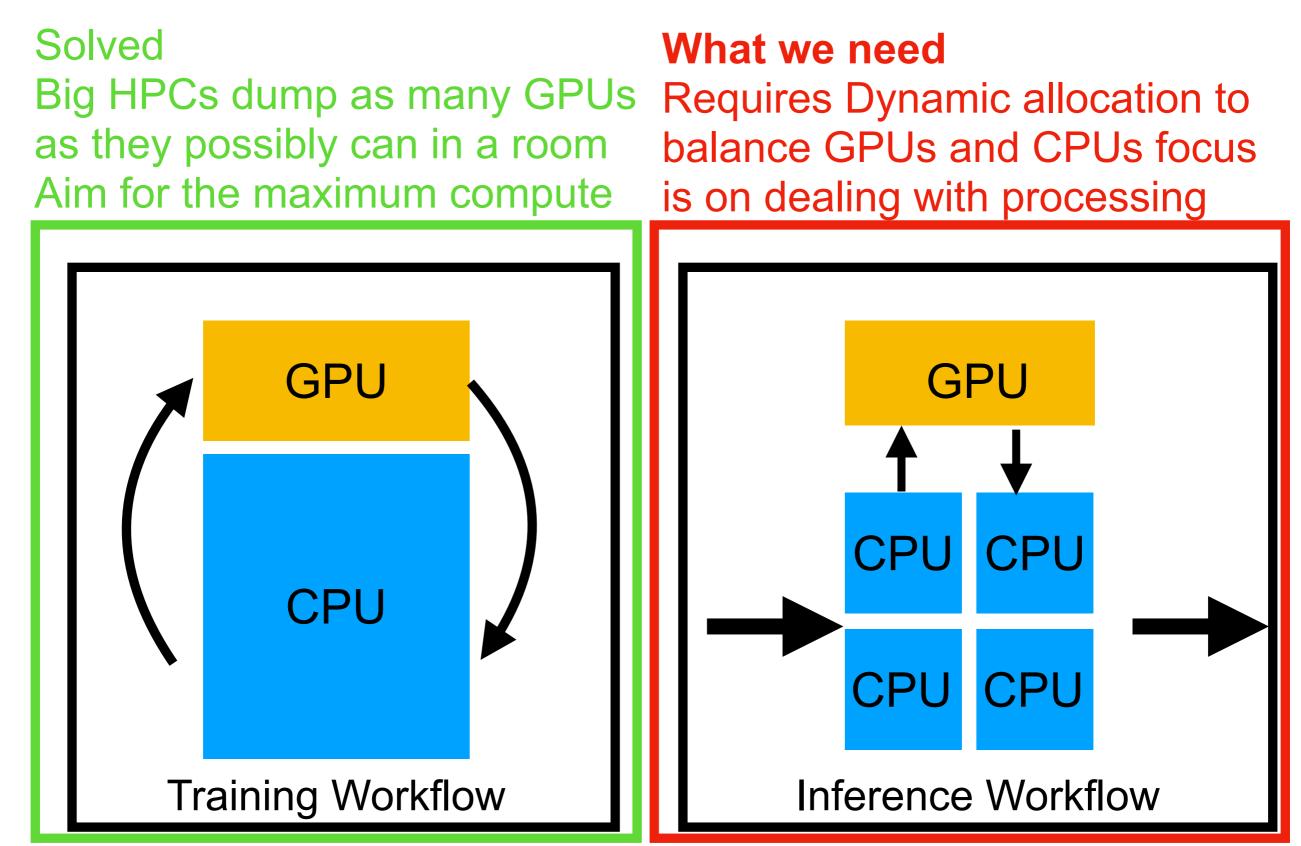
• Inevitable that our algorithms will become progressively larger



All particles in on fell swoop

- With the development of AI algorithms we need two things
 - Training and Testing
 - Processing power to run on the data





Solved

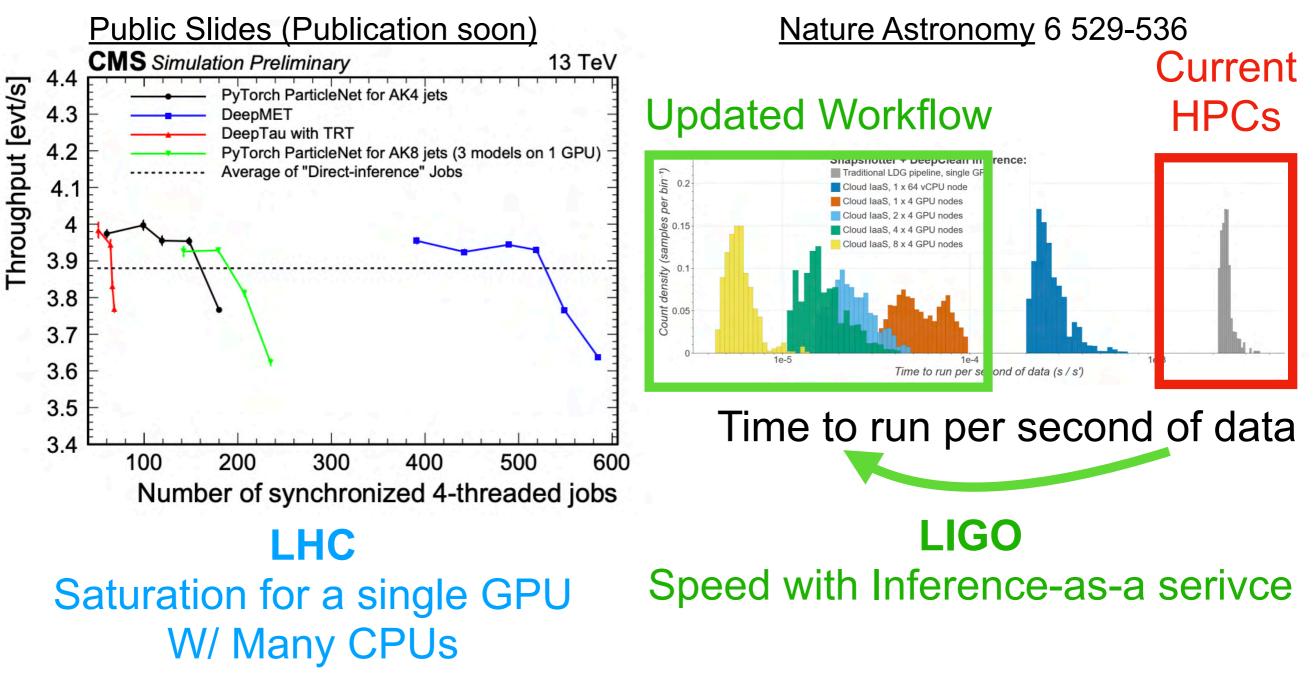
Big HPCs dump as many GPUs as they possibly can in a room Aim for the maximum compute

Training Workflow

What we need

Requires Dynamic allocation to balance GPUs and CPUs focus is on dealing with processing

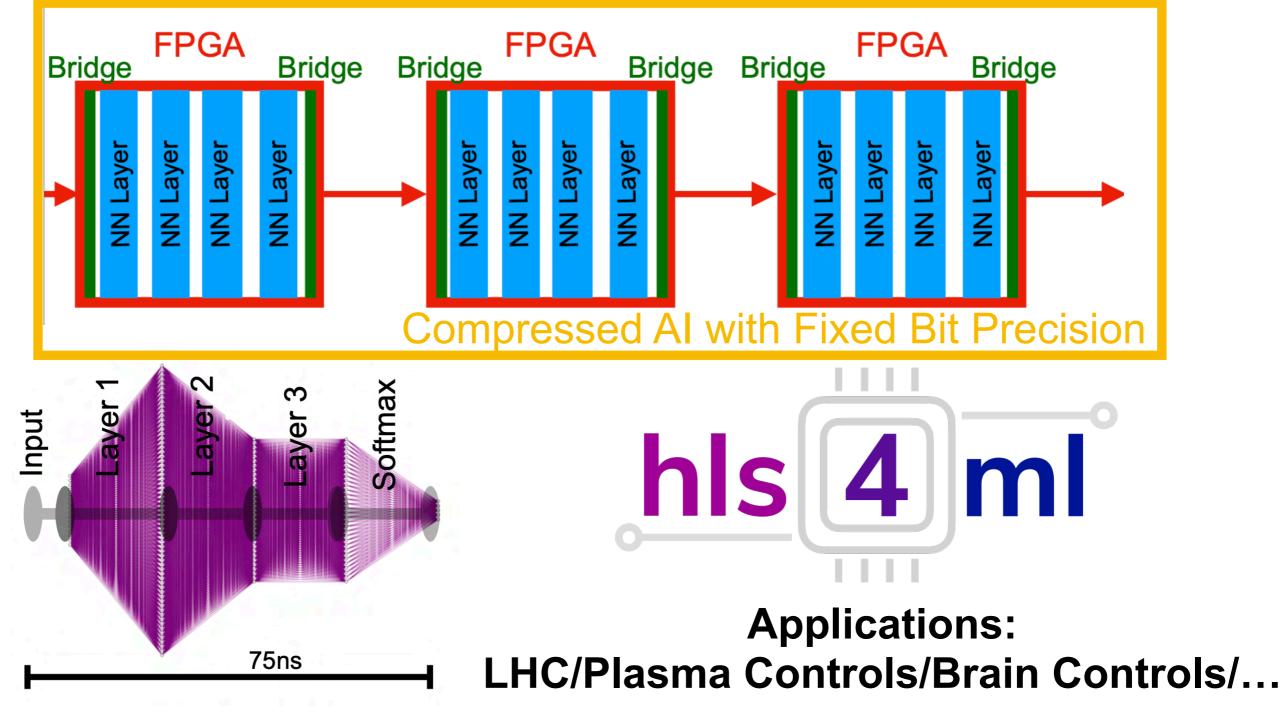
Real World Examples



- Here is a glimpse of studies we have done to show this
- Run large scale studies demonstrating heightened throughput

Custom Computing

Ultra low latency Requires a fully custom solution To achieve ultra high throughput at > 1 Pb/s we use FPGAs This system doesn't look like an HPC/computer anymore



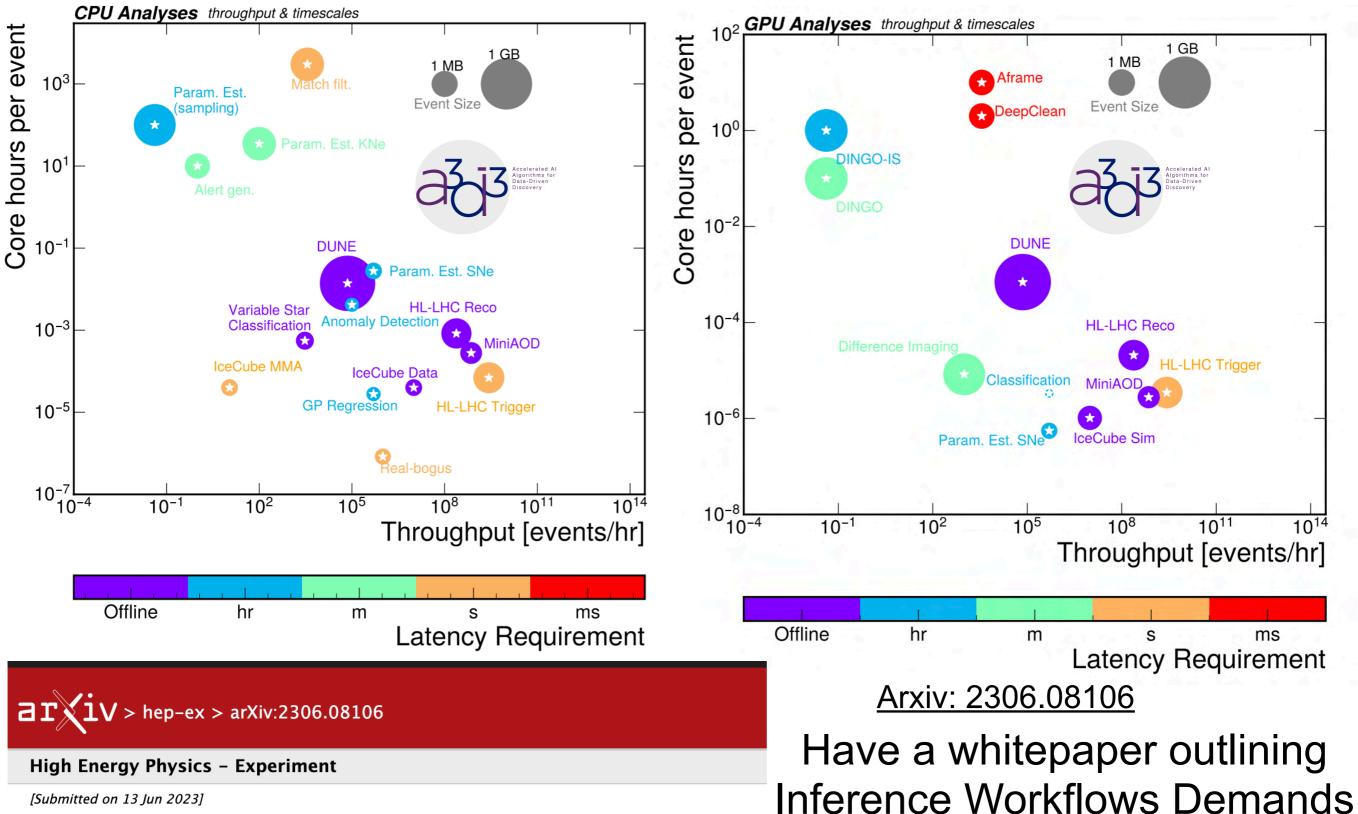
What is Critical?

- We would like to highlight commonalities across domains
 - Computing demands
 - Critically connected infrastructure for ML science deployment
 - ► Inference differs from training → Efficiency is Key
 - Software Stack
 - With all ML algorithms aim for a set of core software tools
 - Containerization: Docker/Singularity/Kubernetes/...

ML Problems

- Awareness of the diversity of problems is critical (Not just LLM)
- Highlighting the similarity across scientific domains is critical

Computing Demands



Applications of Deep Learning to physics workflows

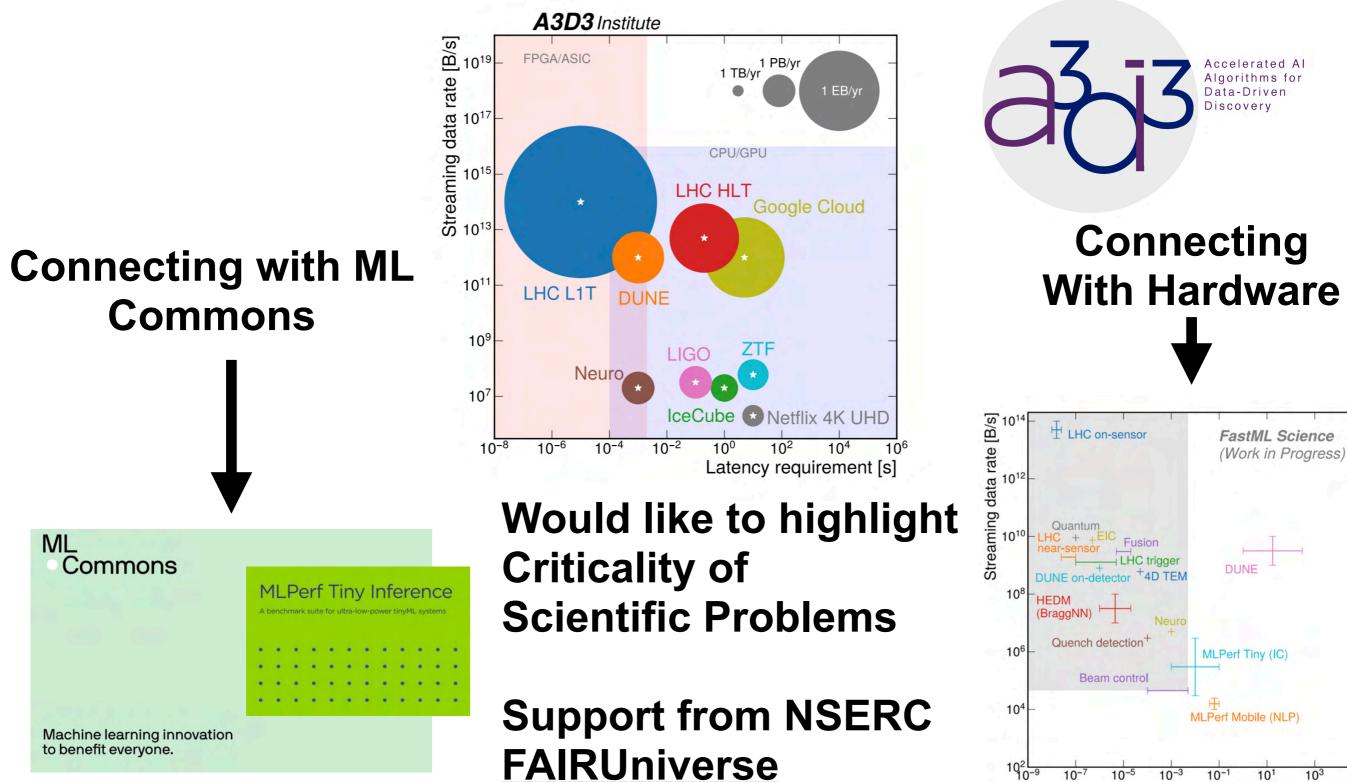
A Vision

- Can we align science across ML Challenges?
 - Details here following C. Herwig, N. Tran (Fermilab)

		Scientific Moonshots		
		Domain A		Domain N
AI thrusts	AI - 1: Real-time	Benchmark 1A		Benchmark 1N
	AI - 2: Control			
	AI - 3: Autonomous			
	AI - 4: Foundation			
	AI - 5: Generative	Benchmark 5A		Benchmark 5N

ML Challenges

• Aiming to build a website hosting Scientific ML Challenges



Reference latency

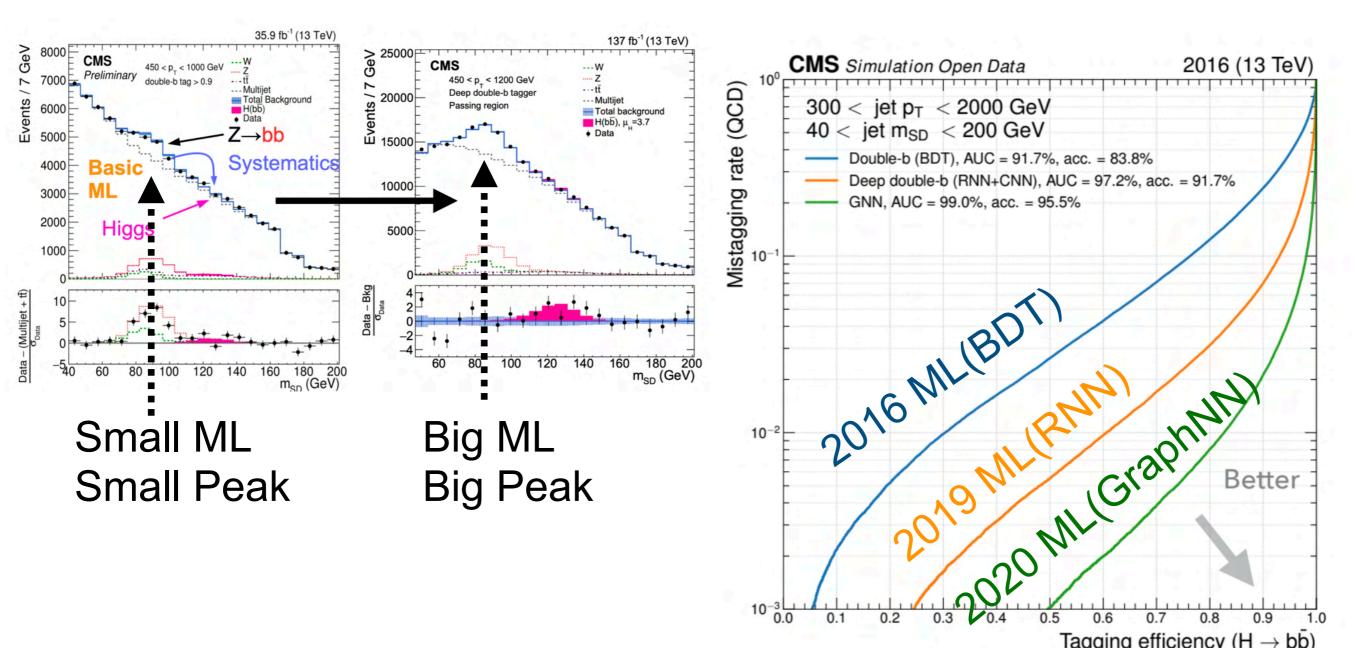
Recap

- There are a variety of large data experiments
 - Latency is often a critical element in the design
- HPCs & other computing sites are not necessarily the best
 - Coming up with a scheme/strategy to do this Driven
- Have done a number of studies to show how this is possible
 - Requires new software stacks
 - Requires different approaches to building out the system
- Expect to have many more challenges coming soon
 - Al is quickly growing throughout the scientific community!

Despite differences in language, there is a common theme Thanks

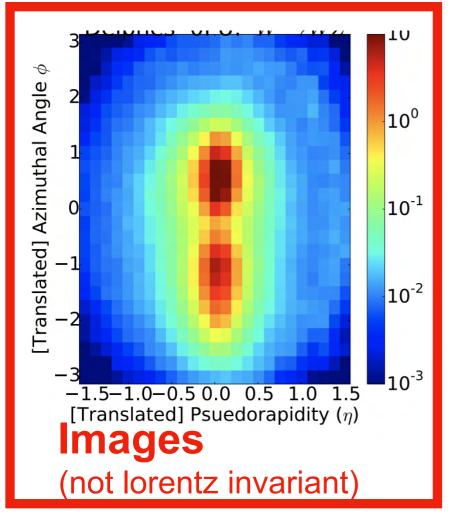
An Angle on AI revolution

- Things are starting to change in the way we compute
 - ML algorithms have the ability to go beyond algorithms
 - This is also b/c GPUs have helped to parallelize computation

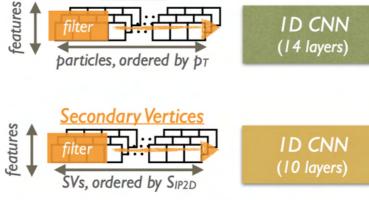


Deep Learning Progression

2016



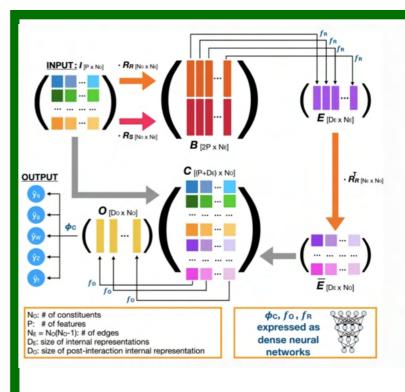
2018 Particles



Particles and SVs with 4-vectors+features

Particles (limited correlations)

2020



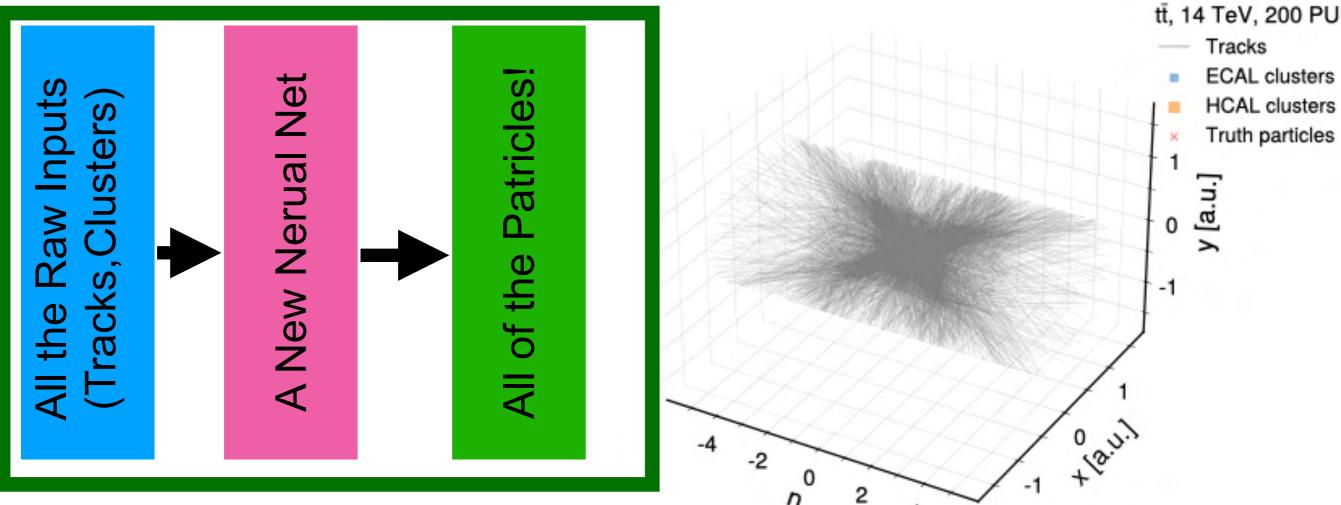
Graphs (Particles+correlations)

Progressively moving towards use of more info

What does this mean?

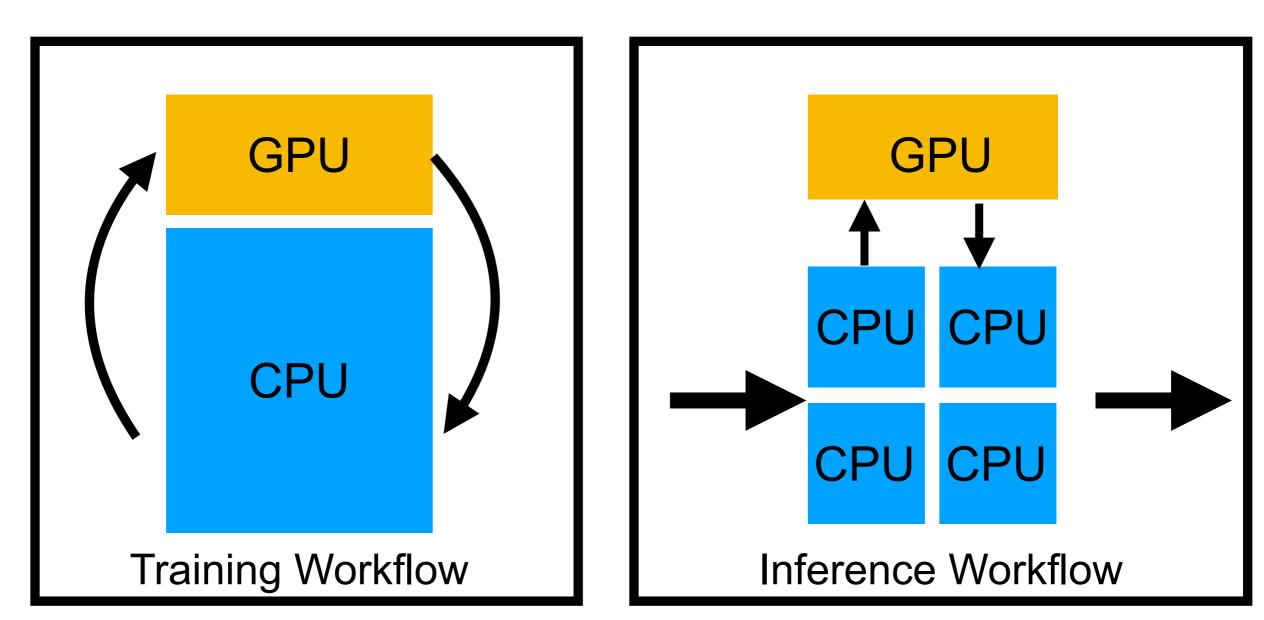
20

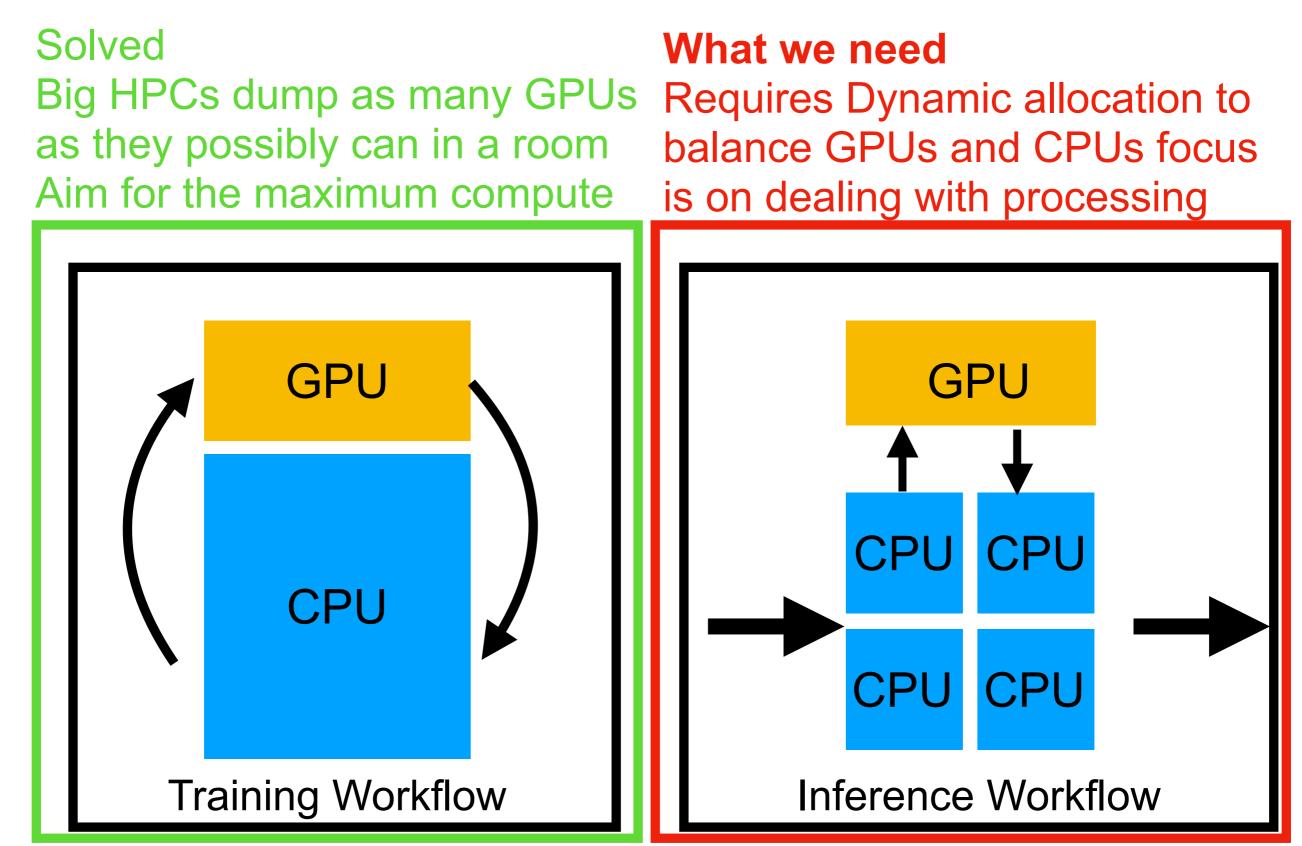
• Inevitable that our algorithms will become progressively larger



All particles in on fell swoop

- With the development of AI algorithms we need two things
 - Training and Testing
 - Processing power to run on the data





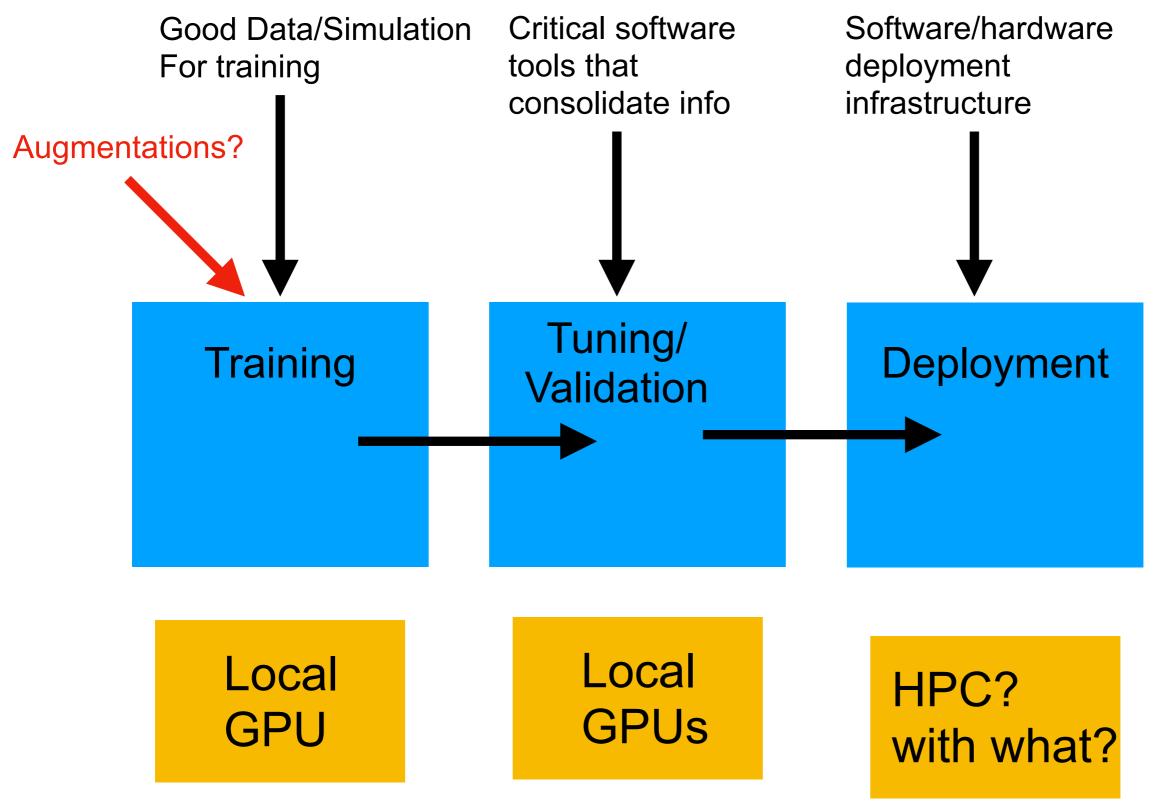
Solved

Big HPCs dump as many GPUs as they possibly can in a room Aim for the maximum compute

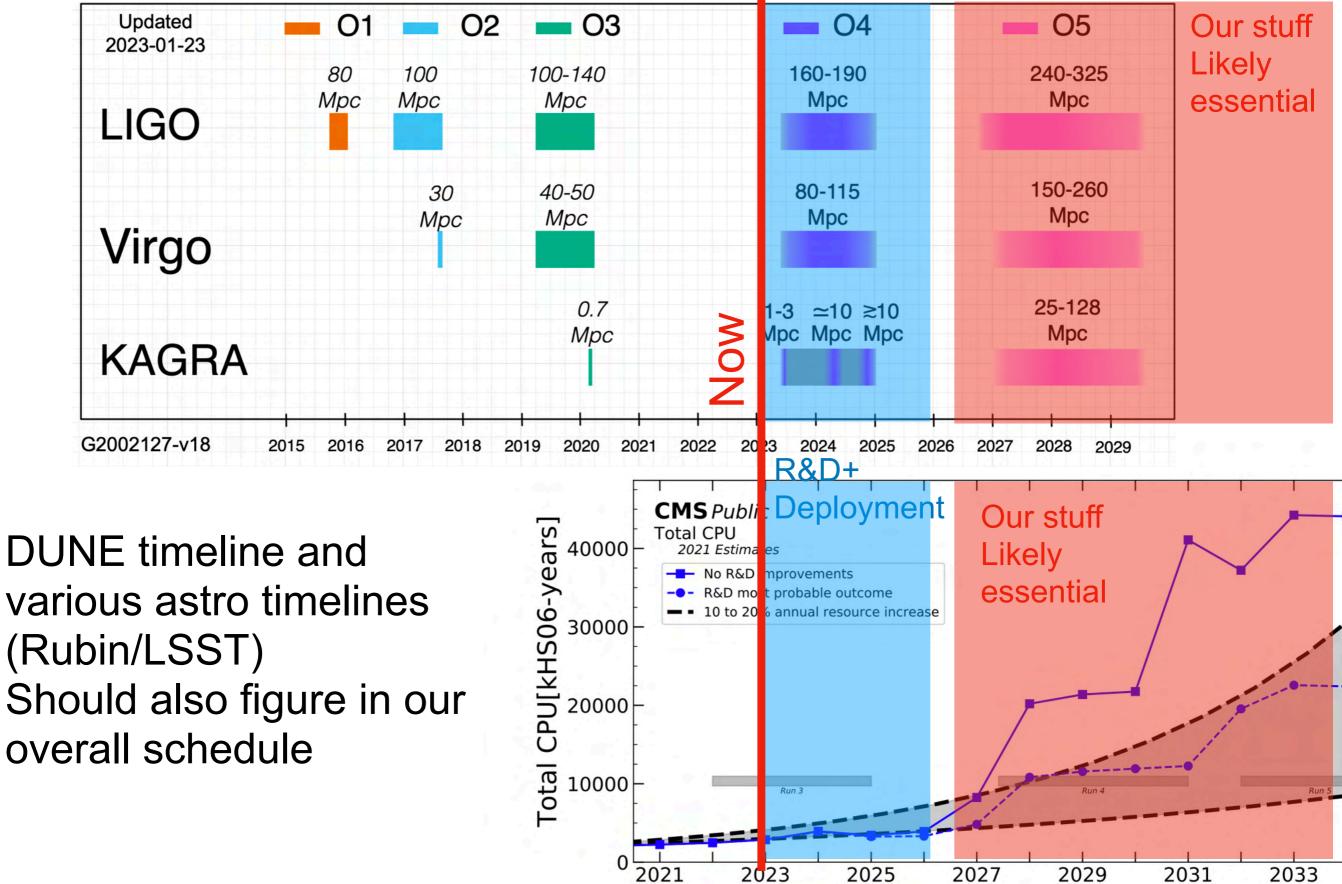
What we need

Requires Dynamic allocation to balance GPUs and CPUs focus is on dealing with processing

Anatomy of an Algo



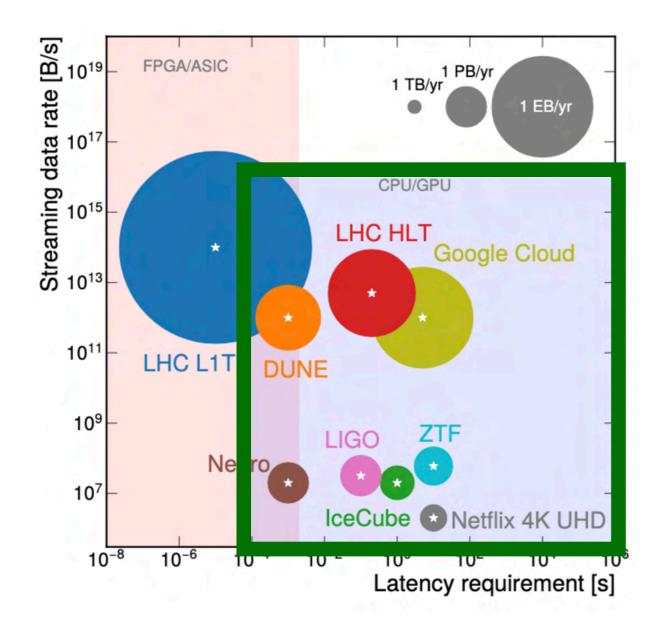
Timelines²⁵



Year

What computes are here?

- Within the FastML Community there is a broad range
 - We often try to characterize this range by customization
 - Low Latency and Low Power need more customization



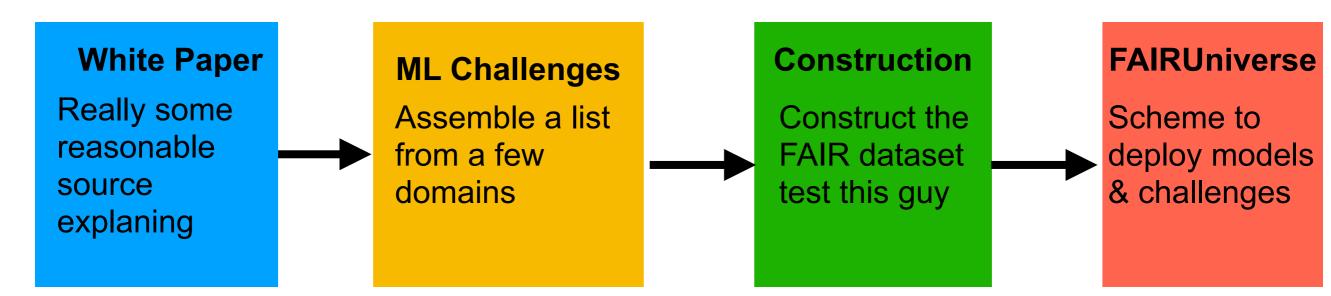
This is our focus here We want to understand the high throughput component

Visualizing Computing

- All of us in the room require at least one thing in common
 - Computers
 - Also, with GPUs/Coprocessors to accelerate things
- As part of this workshop we would like to create a graphic
 - This graph illustrates the computing demands
 - We hope this graphic can be used as a motivator
- The A3D3 graphic has gotten a lot of traction
 - Highlighting the specific challenges for this conference helps
 - Would like to share this with HPCs as a motivator

ML Challenges

- Through the HDR community
 - We are working to organize a set of ML Challenges
 - Aiming to align this work with two other communities
 - MLCommons scientific (through ML tiny)
 - FAIRUniverse grant aimed at supporting



Annual Bootcamp at UW to award results & have a tutorial

FAIRUniverse has established Infrastructure

Codabench and "Fair Universe" Platform Based on https://www.codabench.org/

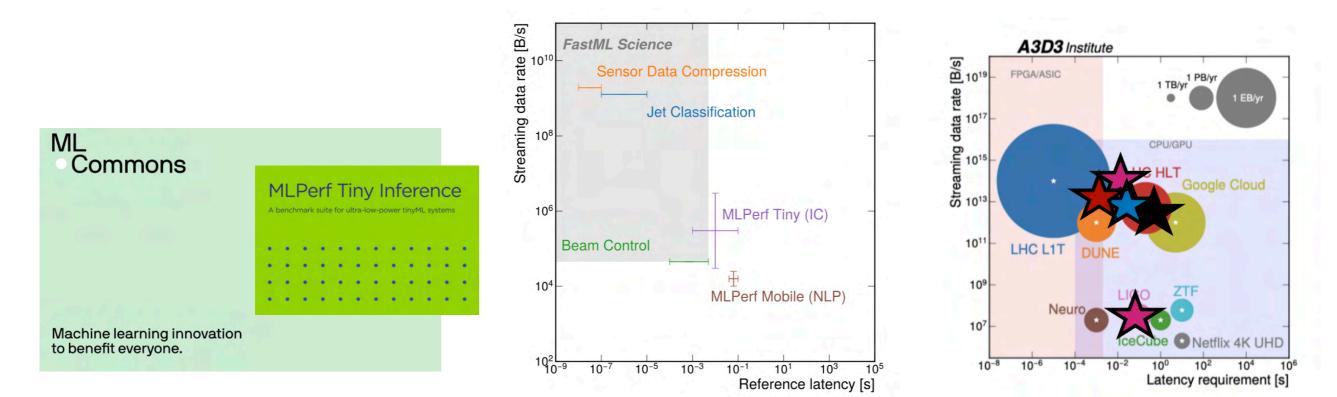


https://docs.google.com/presentation/d/

<u>1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing</u>

Idea for ML Challenges

- There is one underway Icecube Kaggle Challenge
- <u>Dylan's talk</u> from FastML lists some HEP benchmark motivations
 - LHC tracking as a new benchmark
 - LIGO DeepClean as another benchmark
- More complicated challenges
 - Can we make a data generation challenge, or scheduling



A Point to Highlight

- The best way for us to collaborate across domains
 - Making easy-to-use curated datasets or ML problems
 - We have the people in house to really test these datasets
- This is also a way to tie the different domains together
 - We can use this white paper to start testing out our challenges
 - Preparation of datsets
 - Release of models
- Can we get a dataset/model from each scientific domain
 - Also do we have the right benchmarks to do this?

Conclusions

- Welcome! Enjoy your time here in Cambridge
 - We would like to write a white paper
 - We have some discussion time at the end of the conference
- Outline for the White paper (Lets keep it short!)
 - Discussion of computing tools and software
 - Path to aligning these across domains
 - List of critical models in the field
 - What makes these models
 - One plot to rule them all and bind these sections
- A roadmap for future computing can helps us move this forward

Backup