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• LHC collides 40 Million times per second  

• Each collision is about 10 MB of data
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LHC Challenge:  
Can we process every collision?

400 Tera Bytes Per Second



• LIGO  has 105 channels at 1024 Hertz 

• Looking for subtle signals hidden in the noise

3LIGO Challenge: 
Can we find all mergers

Real-time Detailed (10k core) analysis every millisecond



• Things are starting to change in the way we compute 

- ML algorithms have the ability to go beyond algorithms 

‣ This is also b/c GPUs have helped to parallelize computation
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An Angle on AI revolution
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• Inevitable that our algorithms will become progressively larger
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• With the development of AI algorithms we need two things 

- Training and Testing  

- Processing power to run on the data
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Algorithm Needs

GPU

CPU

Training Workflow

GPU

Inference Workflow

CPUCPU

CPU CPU



7

Algorithm Needs

GPU

CPU

Training Workflow

GPU

Inference Workflow

CPUCPU

CPU CPU

Solved 
Big HPCs dump as many GPUs  
as they possibly can in a room 
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• Here is a glimpse of studies we have done to show this 

• Run large scale studies demonstrating heightened throughput
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Real World Examples

LIGO 
Speed with Inference-as-a serivce

LHC 
Saturation for a single GPU 

W/ Many CPUs

Current  
HPCsUpdated Workflow

Time to run per second of data

Nature Astronomy 6 529-536 Public Slides (Publication soon) 

https://www.nature.com/articles/s41550-022-01651-w
https://indico.jlab.org/event/459/contributions/11816/attachments/9537/14083/May_11_SONIC_CHEP.pdf
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Custom Computing
Ultra low latency Requires a fully custom solution 
To achieve ultra high throughput at  > 1 Pb/s we use FPGAs 
This system doesn’t look like an HPC/computer anymore 

Applications:  
LHC/Plasma Controls/Brain Controls/…

Compressed AI with Fixed Bit Precision
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• We would like to highlight commonalities across domains 

- Computing demands 

‣ Critically connected infrastructure for ML science deployment 

‣ Inference differs from training Efficiency is Key 

- Software Stack 

‣ With all ML algorithms aim for a set of core software tools 

‣ Containerization: Docker/Singularity/Kubernetes/… 

- ML Problems 

‣ Awareness of the diversity of problems is critical (Not just LLM) 

‣ Highlighting the similarity across scientific domains is critical 

→
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What is Critical?
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Computing Demands

Arxiv: 2306.08106 

Have a whitepaper outlining 
Inference Workflows Demands

https://arxiv.org/abs/2306.08106


• Can we align science across ML Challenges?  

- Details here following C. Herwig, N. Tran (Fermilab)
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A Vision

https://indico.cern.ch/event/1290850/contributions/5425293/attachments/2662942/4613803/230507%20ml%20challenges.pdf


• Aiming to build a website hosting Scientific ML Challenges

15ML Challenges

Connecting with ML 
Commons

Connecting 
With Hardware

Would like to highlight 
Criticality of  
Scientific Problems 

Support from NSERC 
FAIRUniverse 

https://cs.lbl.gov/news-media/news/2022/new-fair-universe-project-aims-to-build-supercomputer-scale-ai-benchmarks-for-hep-and-beyond/


• There are a variety of large data experiments 

- Latency is often a critical element in the design 

• HPCs & other computing sites are not necessarily the best 

- Coming up with a scheme/strategy to do this   

• Have done a number of studies to show how this is possible 

- Requires new software stacks 

- Requires different approaches to building out the system 

• Expect to have many more challenges coming soon 

- AI is quickly growing throughout the scientific community!
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Recap



Thanks
Despite differences in language, there is a common theme



• Things are starting to change in the way we compute 

- ML algorithms have the ability to go beyond algorithms 

‣ This is also b/c GPUs have helped to parallelize computation
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Deep Learning Progression

Images  
(not lorentz invariant)

Particles and SVs 
with 4-vectors+features

Particles  
(limited correlations) 

Graphs  
(Particles+correlations) 

2016 20202018

Progressively moving towards use of more info



• Inevitable that our algorithms will become progressively larger
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• With the development of AI algorithms we need two things 

- Training and Testing  

- Processing power to run on the data
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Anatomy of an Algo

Training Tuning/ 
Validation Deployment

Good Data/Simulation  
For training

Augmentations?

Local 
GPU

Local 
GPUs

HPC?  
with what?

Critical software 
tools that 
consolidate info

Software/hardware 
deployment 
infrastructure



25Timelines

N
ow

DUNE timeline and  
various astro timelines 
(Rubin/LSST) 
Should also figure in our 
overall schedule

R&D+ 
Deployment Our stuff 

Likely  
essential

Our stuff 
Likely  
essential



• Within the FastML Community there is a broad range 

- We often try to characterize this range by customization 

- Low Latency and Low Power need more customization 
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What computes are here?

This is our focus here  
We want to 
understand the high 
throughput 
component



• All of us in the room require at least one thing in common 

- Computers  

- Also, with GPUs/Coprocessors to accelerate things 

• As part of this workshop we would like to create a graphic 

- This graph illustrates the computing demands 

- We hope this graphic can be used as a motivator 

• The A3D3 graphic has gotten a lot of traction  

- Highlighting the specific challenges for this conference helps  

- Would like to share this with HPCs as a motivator
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Visualizing Computing



• Through the HDR community  

- We are working to organize a set of ML Challenges 

- Aiming to align this work with two other communities 

-  MLCommons scientific (through ML tiny) 

- FAIRUniverse grant aimed at supporting  

• Annual Bootcamp at UW to award results & have a tutorial
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ML Challenges

ML Challenges
Assemble a list  
from a few 
domains

White Paper
Really some 
reasonable 
source 
explaning

Construction

Construct the  
FAIR dataset 
test this guy

FAIRUniverse

Scheme to 
deploy models 
& challenges



29FAIRUniverse has 
established Infrastructure

https://docs.google.com/presentation/d/
1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing 

https://docs.google.com/presentation/d/1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing
https://docs.google.com/presentation/d/1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing


• There is one underway Icecube Kaggle Challenge 

• Dylan’s talk from FastML lists some HEP benchmark motivations 

- LHC tracking as a new benchmark 

- LIGO DeepClean as another benchmark 

• More complicated challenges 

- Can we make a data generation challenge, or scheduling
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Idea for ML Challenges

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://indico.cern.ch/event/1156222/contributions/5062814/


• The best way for us to collaborate across domains 

- Making easy-to-use curated datasets or ML problems 

- We have the people in house to really test these datasets 

• This is also a way to tie the different domains together 

- We can use this white paper to start testing out our challenges 

‣ Preparation of datsets  

‣ Release of models  

• Can we get a dataset/model from each scientific domain 

- Also do we have the right benchmarks to do this? 
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A Point to Highlight



• Welcome! Enjoy your time here in Cambridge 

- We would like to write a white paper  

- We have some discussion time at the end of the conference 

• Outline for the White paper (Lets keep it short!) 

- Discussion of computing tools and software  

‣ Path to aligning these across domains  

- List of critical models in the field  

‣ What makes these models  

- One plot to rule them all and bind these sections  

• A roadmap for future computing can helps us move this forward
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Conclusions



Backup


