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and senescence of leaves; and changes in eco-
system structure and biogeography over decades
and centuries in response to natural disturbances
(e.g., wildfires), anthropogenic disturbances (e.g.,
land-use transitions), and climate change. Ongoing
model development aims to more authentically
represent plant demography and life history char-

acteristics using cohorts of individuals of similar
functional traits in vertically structured plant
canopies (18).
The three-dimensional carbon cycle models

used to estimate ocean uptake of anthropogenic
CO2 evolved from model tracer studies of ocean
physical circulation. Biogeochemical models ad-

ditionally track natural cycling of inorganic carbon,
alkalinity, macronutrients (nitrogen, phosphorus,
and silicon), and often O2; net organic matter
and CaCO3 production and export from the sur-
face ocean; particle sinking and respiration and
remineralization at depth; and air-sea CO2 (and O2)
gas exchange (19). Plankton ecosystem models
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Fig. 1. Representation of the biosphere in Earth system models (ESMs). The top
panel shows land and ocean as included in climate models, and the bottom panel shows
the additional processes included in ESMs. ESMs simulate atmospheric CO2 in response
to fossil fuel emissions and terrestrial and marine biogeochemistry. Some ESMs also
simulate atmospheric chemistry, aerosols, and CH4. Terrestrial processes shown on the
left side of the diagram include biogeophysical fluxes of energy, water, and momentum;
biogeochemical fluxes; the hydrologic cycle; and land-use and land-cover change (13).
The carbon cycle includes component processes of gross primary production (GPP),
autotrophic respiration (RA), litterfall, heterotrophic respiration (RH), and wildfire. Carbon
accumulates in plant and soil pools. Additional biogeochemical fluxes include dust
entrainment, wildfire chemical emissions, biogenic volatile organic compounds (BVOCs),
the reactive nitrogen cycle (Nr), and CH4 emissions from wetlands. Ocean processes are shown on the right side of the diagram. Physical processes
include sea ice dynamics, ocean mixing and circulation, changes in sea surface temperature (SST), and ocean-atmosphere fluxes. The gray shaded
area depicts the marine carbon cycle, consisting of the phytoplankton-based food web in the upper ocean, export and remineralization in the deep sea
and sediments, and the physiochemical solubility pump controlled by surface-deep ocean exchange (100).
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Fig. 1. Representation of the biosphere in Earth system models (ESMs). The top
panel shows land and ocean as included in climate models, and the bottom panel shows
the additional processes included in ESMs. ESMs simulate atmospheric CO2 in response
to fossil fuel emissions and terrestrial and marine biogeochemistry. Some ESMs also
simulate atmospheric chemistry, aerosols, and CH4. Terrestrial processes shown on the
left side of the diagram include biogeophysical fluxes of energy, water, and momentum;
biogeochemical fluxes; the hydrologic cycle; and land-use and land-cover change (13).
The carbon cycle includes component processes of gross primary production (GPP),
autotrophic respiration (RA), litterfall, heterotrophic respiration (RH), and wildfire. Carbon
accumulates in plant and soil pools. Additional biogeochemical fluxes include dust
entrainment, wildfire chemical emissions, biogenic volatile organic compounds (BVOCs),
the reactive nitrogen cycle (Nr), and CH4 emissions from wetlands. Ocean processes are shown on the right side of the diagram. Physical processes
include sea ice dynamics, ocean mixing and circulation, changes in sea surface temperature (SST), and ocean-atmosphere fluxes. The gray shaded
area depicts the marine carbon cycle, consisting of the phytoplankton-based food web in the upper ocean, export and remineralization in the deep sea
and sediments, and the physiochemical solubility pump controlled by surface-deep ocean exchange (100).
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Cheyenne & Derecho Supercomputers
(Images: NCAR CISL; Hardware specs: Brian Vanderwende)
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Cheyenne & Derecho Supercomputers
(Images: NCAR CISL; Hardware specs: Brian Vanderwende)

20% compute 
power from GPUs; 
328 A100 GPUs 
across 82 nodes, 
equiv. 67% Cheyenne 
performance, plus 
above analysis 
cluster.

No GPU capability; 
Separate analysis 
cluster has 64 V100 
GPUs across 10 
nodes, with plans for 
28 A100 GPUs across 
7 nodes.
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calibration and uncertainty quantification
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PERSPECTIVE RESEARCH

Earth system models48. Overall, we identify five major challenges and 
avenues for the successful adoption of deep learning approaches in 
the geosciences, as follows.

(1) Interpretability
Improving predictive accuracy is important but insufficient. 
Certainly, interpretability and understanding are crucial, including 
visualization of the results for analysis by humans. Interpretability 
has been identified as a potential weakness of deep neural networks, 
and achieving it is a current focus in deep learning49. The field is 
still far from achieving self-explanatory models, and also far from 
causal discovery from observational data50,51. Yet we should note that, 

given their complexity, modern Earth system models are in practice 
often also not easily traceable back to their assumptions, limiting 
their interpretability too.

(2) Physical consistency
Deep learning models can fit observations very well, but predictions 
may be physically inconsistent or implausible, owing to extrapo-
lation or observational biases, for example. Integration of domain 
knowledge and achievement of physical consistency by teaching 
models about the governing physical rules of the Earth system can 
provide very strong theoretical constraints on top of the observa-
tional ones.
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Fig. 2 | Four examples of typical deep learning applications (left 
panels) and the geoscientific problems they can be applied to (right 
panels). a, Object recognition in images links to classification of 
extreme weather patterns using a unified convolutional neural network 
on climate simulation data41. b, Super-resolution applications relate to 
statistical downscaling of climate model output72. c, Video prediction is 

similar to short-term forecasting of Earth system variables. Right image, 
courtesy of Sujan Koirala and Paul Bodesheim, Max Planck Institute for 
Biogeochemistry. d, Language translation links to modelling of dynamic 
time series (ref. 96 and figure 11 in ref. 97). Left image, courtesy of Stephen 
Merity (figure 1 in https://smerity.com/articles/2016/google_nmt_arch.
html).
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Current research topics:
• Emulation of climate models for parameter 

calibration and uncertainty quantification
• Segmentation models for detection and 

understanding extreme weather events

Reichstein et al. (2019)
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Current research topics:
• Emulation of climate models for parameter 

calibration and uncertainty quantification
• Segmentation models for detection and 

understanding extreme weather events
• Bias correcting climate models for 

subseasonal prediction

Reichstein et al. (2019)
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workforce by promoting deeper collaboration centered on 
analytics and transforming how geoscientists synthesize 
and extract information from large, diverse datasets.
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Profoundly increase the effectiveness of the NCAR/UCAR 
workforce by promoting deeper collaboration centered on 
analytics and transforming how geoscientists synthesize 
and extract information from large, diverse datasets.

Vision

Cultivate a community of practice centered on the 
development and application of scalable analysis workflows:
- Core software development and computing
- Training and education
- Community building: regular meetings, blog posts, 

analysis “office hours”, asynchronous discussion forum
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kdagon@ucar.edu
@katiedagon

Core Development
• Create and share analysis workflows for AI/ML tasks.
• Democratize access to diverse data sources.

Training and Education
• Broaden participation through Earth data science education.
• Facilitate entry points for domain scientists to explore AI/ML, and 

AI/ML experts to explore Earth science applications.
• Provide training on how to best leverage research infrastructure 

(e.g., GPU hackathons, cloud computing).

Community Building
• Encourage open science and development contributions and 

reward them like scientific publications.
• Fund interdisciplinary research and science-software partnerships.

Thanks!


