Lightening Talks

National Science Foundation Large Facilities Workshop May 24, 2016

Regional Class Research Vessel

NSF LARGE FACILITIES WORKSHOP

Status Update

- Passed CDR/PDR/BSR/Acquisition Review
- FDR in October
- NSB recommended 2 vessels based on Decadal Survey. NSF has \$106M in FY17 Pres Bud.

(i.e the mixed blessing of "design refresh")

100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190

2012: 175'

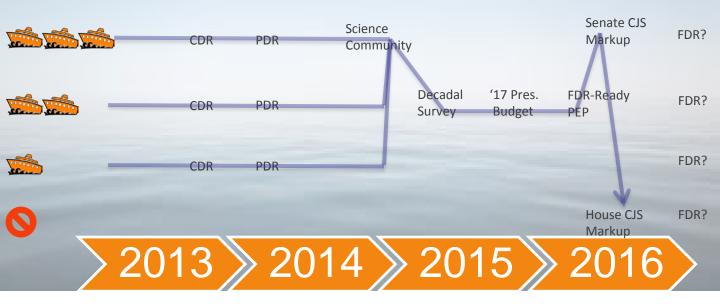
2009: 155'

2016: 193'

m

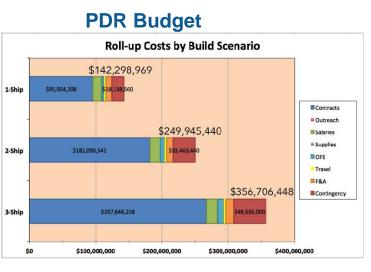
10 15 20 25 30 35 40 45 50 55 60 65 70 75

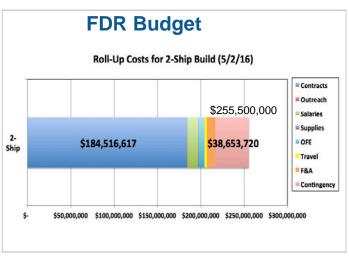
0 5



195 200

Challenge and Achievement #2 RCRV Scenario Development





Budget Progression

UNOLS

Bridge Mock Up

Cavitation-free to 11 kts

UNOL

• No evidence of bubble sweep down under simulated survey conditions

LINGLE				4				1				RCRV Regional Class Rese	earch Vessels
and Class Research	Ris	k N	lana	gei	ment								
UNOLS	First	Last	Previous	Next	Toggle View	Sort	ToC	Add	Remove	Search	Submit	Show All	Print Ri
	1010 000			on o.				TRIEZ C					

Short Name	Emergent Technologies	Sub Risks			Actions	Updates			
Risk ID 6 Type Risk Description	R Category X Scope X Budget The risk that new technologies will be develop that are preferable to those specified. These in not limited to: -green-ship solutions, -navigational and communications suites, -tect related to the Telepresence Center -Science M	Sub Risk Page		Risk Informa WBS Phase		Best Case Likely Case Worst Case	Budget (\$k)	Schedule (Months)	
Probability Consequence	Capabilities/Outfit -Ship's Outfit Likely Negligible	Probability Consequence Matrix	Risk Desc.		Risk Informa	ition	Contingency Percentile Spread		
Risk Level Owner	Low Contingency Total Bailey Lahaie-Noll Sillars Comar X Reimers TOC X Glosten Robertson Willis Hilliard Romsos Killian	\$1973			Phase	1.1.C.2 1c			
0	A				Risk Informa	tion		Budget (\$k)	Schedule (Months)
Current Status	Active	Burn 💰	Sub Calc.	6.01	WBS	1.2.2	Best Case	0	
Retirement Date	End of Phase IV	Rates 🔫	Sub ID	.01	Phase	2	Likely Case	10	
			Status	Active			Worst Case	25	
Basis of Estimate	Glosten Charges Estimated using \$250/hr. Phase IC: Cost of having Glosten evaluate for	incorporation.	Risk Desc.				Contingency Percentile Spread	58	

GEMINI Observatory

Exploring the Universe, Sharing its Wonders

Gemini Observatory operations science & development

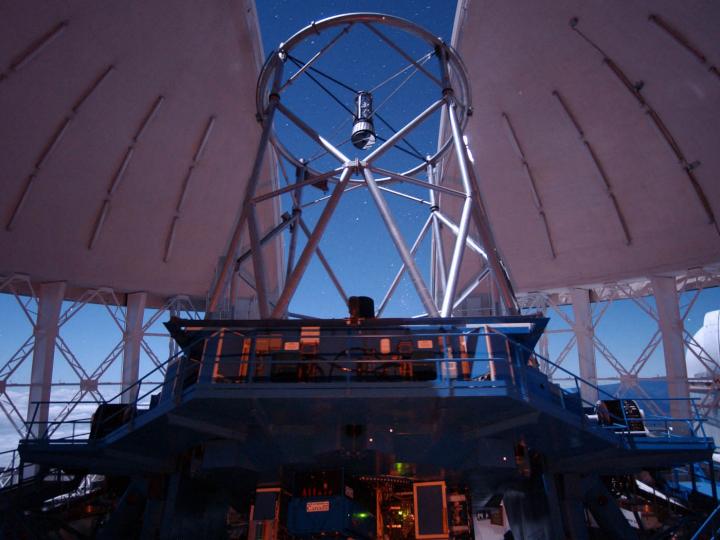
Andy Adamson Associate Director of Operations, Gemini

Scot Kleinman Associate Director of Development, Gemini

The International Partnership

International Agreement *2016-2021* includes as partners: **USA, Canada, Brazil, Argentina, and Chile**

Shares **2016-2021:** (Budget ~**27+x \$M/year**) US 70 % CA 20 % BR 7 % AR 3% AUS+KOR +x%

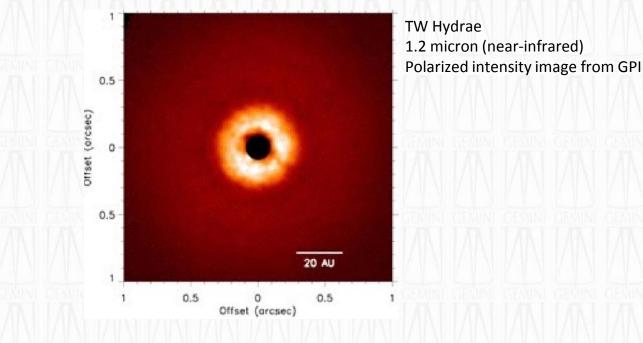


KASI (Korea) is a limited-term partner since *2015,* aspiring to become a full partner

Australia did not remain a full partner beyond *2015*, but is continuing in *2016* as limited-term partner

Andy Adamson NSFLFW May 2016

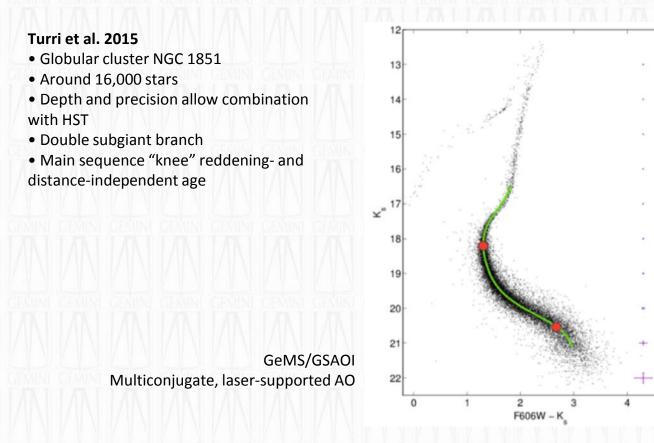
Proposing for time at Gemini


The regular proposal: *once per semester,* through the national Time Allocation Committees (TAC) for regular proposals 70

Large & Long Programs: *once per year*, through the Large Program TAC for large and/or long **ambitious** proposals

Fast turnaround programs: *once per month*, 'peer reviewed', no TAC for short, rapid, immediate and/or follow-up proposals

20%

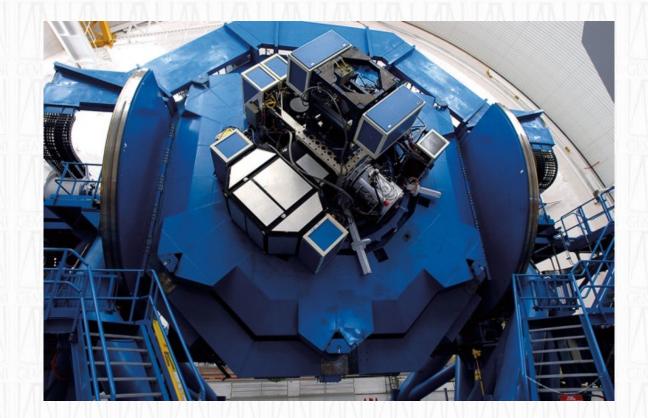

Recent Science Highlights

Rapson et al. 2016

- GPI probes w/in 10AU of TW Hydrae
- Comparison with simulations suggests 0.2M Jupiter planet at 21A

Recent Science Highlights

Andy Adamson & Scot Kleinman NSFLFW 2016


Gemini Instruments

2

1

Knulle

Gemini Instruments

Engaging the Community

Bring your Projects

Apply for Long and Large, Fast Turnaround, or standard TAC; Upgrade a current instrument, or build part or all of a new one

Bring your Instrument

Contact us if you would like to bring a Visiting Instrument or propose for our new projects and initiatives

Bring yourself

Rediscover the advantages of classical observing and mitigate weather loss with Priority Visiting Observing

Bring your Student

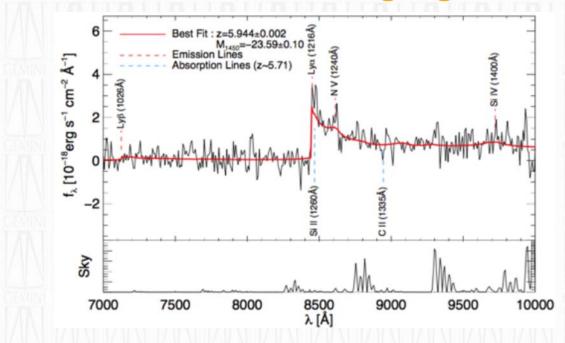
Give your student the extra boost of motivation by taking her/him along and we'll chip in to pay for it!

Bring your Code

Share your reduction/analysis code or just expertise on our new User Forum. Win observing time.

Contracting Issues

- Negotiations typically drag on longer than hoped
- Approval process through oversight and NSF takes a long time
- Sometimes difficult to take advantage of opportunities while adhering to procurement requirements
- Reserves, contingency, risk mitigation funds: a moving target in policy, but critical for projects
- Typical university teams still used to grad students and duct tape; hard to move to more rigorous project management and systems engineering approaches


... and one more thing

Very interested in how you do resource planning for both current and future operations and projects in your organizations.

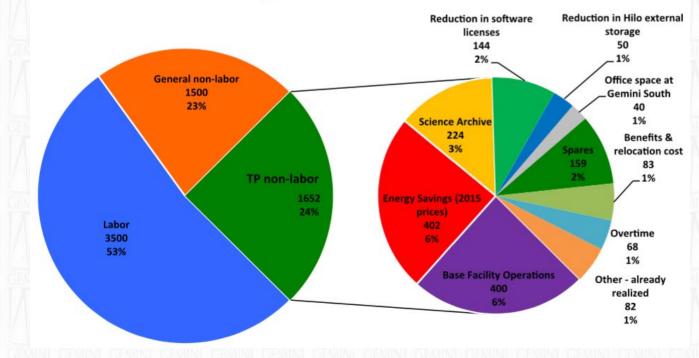
Thank You

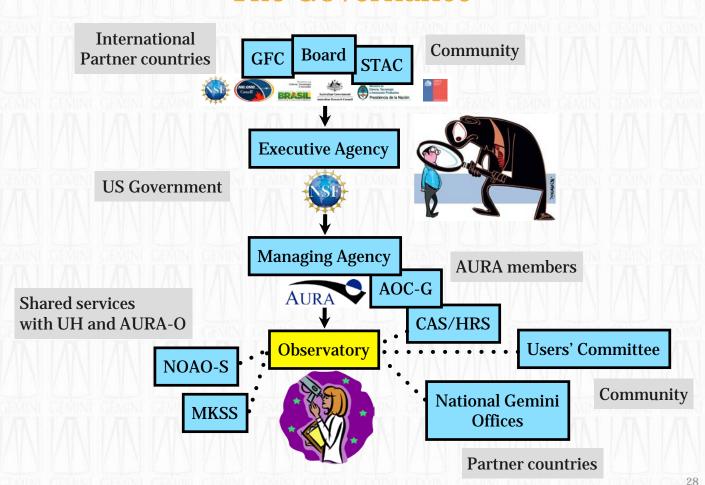
Recent Science Highlights

Kim et al. 2015 • first publication from Korean participation in Gemini partnership • GMOS-S spectroscopy confirm source as quasar, and redshift • sample from Infrared Medium-Deep Survey • not enough quasars for cosmic reionization, even considering candidates as well as confirmed quasars in the survey

Andy Adamson & Scot Kleinman NSFLFW 2016

Gemini North runs from Hilo since November





UK withdrawal: 25% budget reduction

O&M Budget Reduction - As of 2016 Q1

The Governance

Lightning Talk

Integrated Cost-Schedule Risk Analysis

Mike Carrancho, P.E. Smithsonian Institution NSF Large Project Workshop 24 May 2016

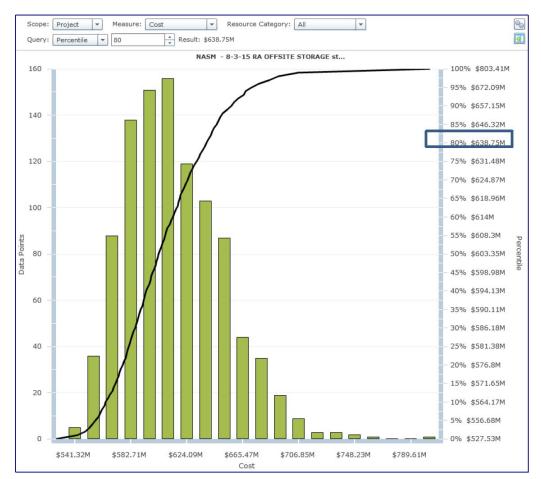
Integrated Cost-Schedule Risk Analysis

National Air & Space Museum

- Very Large, complex, renovation project
- Complete HVAC replacement
- Complete stone envelope and primary weather barrier replacement
- Museum to remain open and operational during project
- "Like rebuilding a 747 while in flight" Ret. Gen J. Dailey

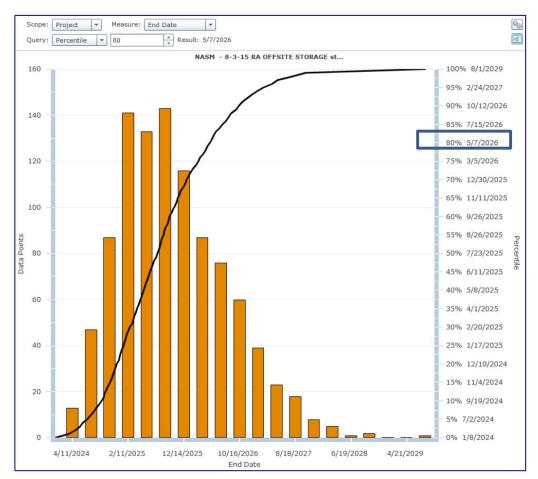
Cost Risks & Impacts

Top Cost Risk Drivers							
No.	Risk Description	Cost Impact	Time Impact (days)				
1	Congressional approval of funding amount may be less than requested	\$24,306,400	96				
2	Uncertainty	\$22,178,500	121				
3	Client initiated/requested changes	\$18,246,100	75				
4	Impact of delayed funding for any particular sequence (construction)	\$13,917,700	59				
5	Stone Risk - Production (Fabrication and Inspection)	\$8,495,210	96				
6	Contractor's construction management team may not be competent to manage project of this complexity	\$7,996,700	21				
7	Major design defect or error	\$4,963,780	6				
8	Lack of laydown & staging areas requiring close in off site storage for construction for GC	\$4,773,020	13				
9	Lack of adequate SI "Supervision and Administration" budget	\$4,407,350	0				
10	Proposed schedule for de-mount/deinstallation of 3-5 months may be insufficient.	\$4,202,490	27				



Schedule Risks & Impacts

Top Schedule Risk Drivers						
No.	Risk Description	Time Impact (days)	Cost Impact			
1	Uncertainty	121	\$22,178,500			
2	Congressional approval of funding amount may be less than requested	96	\$24,306,400			
3	Stone Risk - Production (Fabrication and Inspection)	96	\$8,495,210			
4	Client initiated/requested changes	75	\$18,246,100			
5	Planned 24 hour construction operations will have negative impact (morale, fatigue, union grievances, tying up supervisors time) - from collections movement perspective.	66	\$2,553,200			
6	Impact of delayed funding for any particular sequence (construction)	59	\$13,917,700			
7	Proposed schedule for re-mount/reinstallation of 10-12 months may be insufficient.	31	\$740,064			
8	Proposed schedule for de-mount/deinstallation of 3-5 months may be insufficient.	27	\$4,202,490			
9	Contractor's construction management team may not be competent to manage project of this complexity	21	\$7,996,700			
10	Protest from unsuccessful bidders	19	\$984,379			



Cost Probabilities

Schedule Probabilities

Questions

Mike Carrancho, PE

Smithsonian Institution Deputy Director, Office of Planning, Design and Construction CarranchoM@si.edu

CHESS Highlights

Joel D. Brock, Director Cornell High Energy Synchrotron Source (CHESS)

joel.brock@cornell.edu

CHESS is supported by the NSF and the NIH/NIGMS under NSF award DMR-1332208

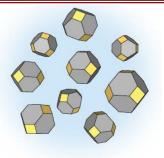
Cornell University Cornell High Energy Synchrotron Source

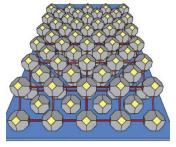
NSF LFW - May 24, 2016

36

CHESS at a Glance

- NSF stewarded, national user facility providing synchrotron x-ray facilities to an international, multidisciplinary user community.
- Located on central campus of Cornell University, Ithaca, New York
- Our X-ray facilities are optimized for high-flux, high-energy applications in: Materials Research, Life Science, Engineering, Biology, Physical Sciences, and Cultural Heritage.
- Over 1,300 user visits, 800 unique visitors each year
- 11 experimental stations
- > 3600 hours per year of x-ray operations.
- >\$20M/year in funding
- ~75 FTEs, ~150 people on payroll
- 60 undergraduates per year participate in laboratory research.
- X-ray Beam time awarded via competitive proposal process
 - Proposals rated by (domain science) experts
 - ~ 60% success rate
 - ~1 publication / day of operations


Nanocrystal self-assembly sheds its secrets: a new approach gives a real-time look Tisdale (MIT) DMR-1332208


The transformation of simple colloidal particles — bits of matter suspended in solution — into tightly packed, beautiful lace-like meshes, or superlattices, has puzzled researchers for decades. Pretty pictures in themselves, these tiny superlattices, also called quantum dots, are being used to create more vivid display screens as well as arrays of optical sensory devices. The ultimate potential of quantum dots to make any surface into a smart screen or energy source hinges, in part, on understanding how they form.

Through a combination of techniques including controlled solvent evaporation and synchrotron X-ray scattering, the real time self-assembly of nanocrystal structures has now become observable *in-situ*. The findings were reported in the journal Nature Materials in a paper by Assistant Professor William A. Tisdale and grad student Mark C. Weidman, both at MIT's Department of Chemical Engineering, and Detlef-M. Smilgies at the Cornell High Energy Synchrotron Source (CHESS) [1].

To make the nanoscale movies (see third page), the group took advantage of a CHESS-developed experimental chamber and a recently developed dual detector setup with two fast area detectors, while environmental conditions were changed during the formation of superlattices. Using lead sulfide nanocrystals, they were able to conduct simultaneous small-angle X-ray scattering (capturing the structure of the superlattice) and wide-angle X-ray scattering (capturing atomic scale orientation and alignment of single particles) observations during the evaporation of a solvent.

"We believe this was the first experiment that has allowed us to watch in real time and in a native environment how self-assembly occurs," Tisdale says. "These experiments would not have been possible without the experimental capabilities developed by Detlef and the CHESS team." [2]

(top) Illustration of randomly oriented nanocrystals in solution.

(bottom) Illustration of two layers of the atomically aligned bcc nanocrystal superlattice on the substrate, where the bcc (110)SL plane is parallel to the substrate

[1] Mark C. Weidman, Detlef- M. Smilgies, and William A. Tisdale, "Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering," Nat Mater advance online publication (2016).

[2] Text quoting an MIT report by Michael Patrick Rutter; https://mitei.mit.edu/news/nanocrystal-self-assembly-sheds-its-secrets

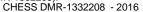
Nanocrystal self-assembly sheds its secrets: a new approach gives a real-time look Tisdale (MIT) DMR-1332208

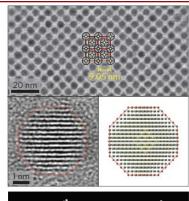
Science - What was found? What is new?

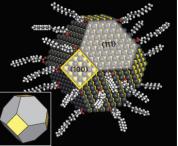
- Demonstrated the first experiment to view in real time and in a native environment how self-assembly occurs
- Developed a new method to observe self-assembly of nanocrystals using controlled solvent evaporation and synchrotron X-ray scattering
- The discovery will lead to refined models for self-assembly of a wide range of organic soft materials.

Impact - Why is it important?

- The broader adoption of nanocrystals into energy conversion technologies has been limited by the lack of knowledge about how they self-assemble
- These tiny superlattices, also called quantum dots, are being used to create more vivid display screens as well as arrays of optical sensory devices.
- The ultimate potential of quantum dots to make any surface into a smart screen or energy source hinges, in part, on understanding how they form
- This new findings will enable direct manipulation of resulting superlattices, with the possibility of on-demand fabrication and the potential to control the formation of related soft materials such as proteins and polymers and materials needed for new technologies


Why did this research need CHESS?


- CHESS-developed experimental chamber and a recently developed dual detector setup with two fast area detectors was needed to control environmental conditions during the formation of superlattices.
- The CHESS D1 experimental station has high-flux, wide energy-bandpass x-ray optics and can support multiple simultaneous fast 2D detectors and a fast data-acquisition compute farm to capture time-resolved kinetics of the in-plane and out-of-plane molecular ordering

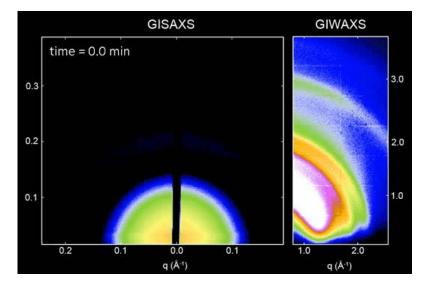

Work supported by an Energy Frontier Research Center (DOE-BES), made use of MRSEC Shared Experimental Facilities at MIT (NSF DMR-08-19762), a NSF

raduate Research Fellowship (1122374), and CHESS (DMR-1332208). Cornell High Energy Synchrotron Source CHESS DMR

(top)

TEM image of a bcc superlattice of the nanocrvstals with a superimposed [100]SL view of four unit cells with a lattice constant of 9.05 nm. Inset (left) shows a high-resolution TEM image of a single nanocrystal in which the atomic planes are visible and the corresponding nanocrvstal model (right) that leads to this pattern.

(bottom)


Atomic model of the nanocrystals used in this study highlighting a hexagonal (111)NC face and a square (100)NC face. The ligand coverage density has been decreased for the image to better show the nanocrystal core.

[1] Mark C. Weidman, Detlef- M. Smilgies, and William A. Tisdale, "Knetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering," Nat Mater advance online publication (2016).

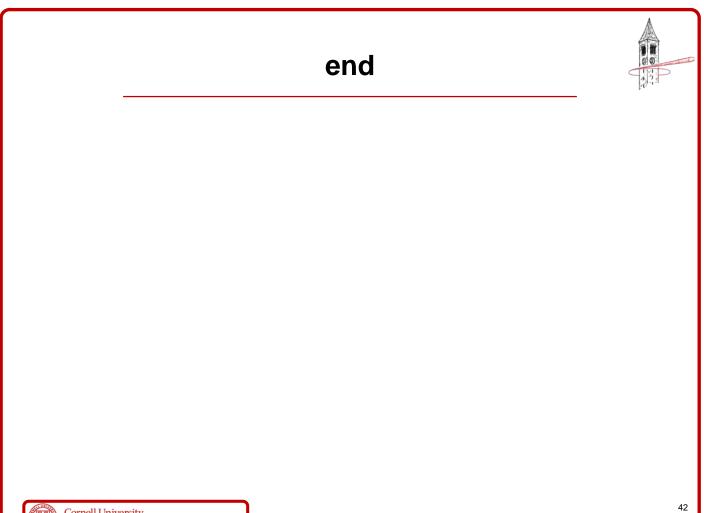
[2] Text quoting an MIT report by Michael Patrick Rutter; https://mitei.mit.edu/news/nanocrystal-self-assembly-sheds

Nanocrystal self-assembly sheds its secrets: a new approach gives a real-time look Tisdale (MIT) DMR-1332208

Time-resolved X-ray scattering reveals the transition from a disordered colloid to a highly ordered superlattice. a–h, Temporal evolution of GISAXS (square panels) and GIWAXS (vertical panels) patterns during the in situ measurement of nanocrystal self-assembly. The GISAXS patterns show the transition from a colloidal suspension to an fcc superlattice to a bcc superlattice via contraction of the c axis. The white circles on the left halves of the GISAXS patterns are the predicted scattering locations for the superlattice parameters indicated above each image. The GIWAXS patterns show the early onset of orientational alignment as well as the shape transformation of the 200NC scattering paek.

CHESS DMR-1332208 - 2016

The Future: optimizing for high-flux, high-energy x-rays CHESS-U


Funding (awaiting public announcement by Governor Cuomo)

- New York State's Upstate Revitalization Initiative (URI)
- \$15M over 3 years (completion 12/31/2018)
- Goal is regional economic development (job creation and retention in Southern Tier) – public/private partnerships

Capital Project – optimize for high-flux, high-energy x-rays

- Single particle beam operation
- Increase storage ring energy from $5.3 \rightarrow 6.0$ GeV
- Increase storage ring current from $100 \rightarrow 200 \text{ mA}$
- Decrease storage ring emittance
- Increase number of undulator sources from 2 to 10
- (re)build/upgrade 6 x-ray beamlines and experimental stations

International Ocean Discovery Program

NAL NAL VALVALVA NUL NUL NUL

JOIDES Resolution facility Texas A&M University as Science Operator

SENGERE-SADESEE

Scientific Ocean Drilling

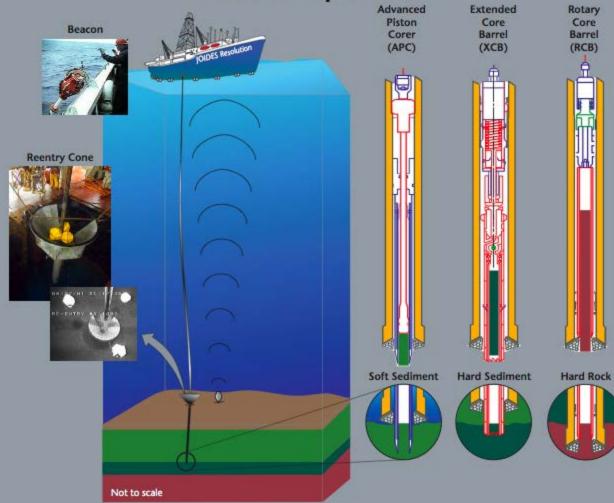
Largest and longest running international research program dedicated to exploring Earth's history and structure

- Project Mohole: 1958-1966
- Deep Sea Drilling Project (DSDP): 1968-1983
- Ocean Drilling Program (ODP): 1985-2003
- Integrated Ocean Drilling Program (IODP): 2003-2013
- International Ocean Discovery Program (IODP): 2013-2023

IODP Member Countries

*	Australia		Germany	╞╋	Norway
	Austria		Iceland		Portugal
	Belgium	6	India		South Korea
*	Canada		Ireland		Spain
***	China		Italy		Sweden
	Denmark		Japan	+	Switzerland
	France		Netherlands		United Kingdom
	Finland	**	New Zealand		United States

The International Ocean Discovery Program: Multiple Platforms



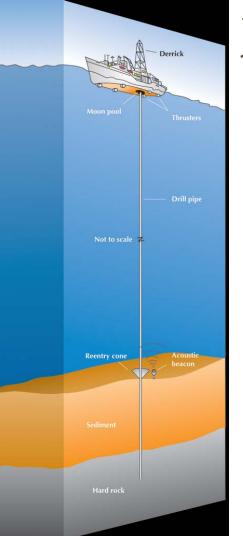
JOIDES Resolution

Chikyu

Mission Specific Platforms

Tools of Exploration

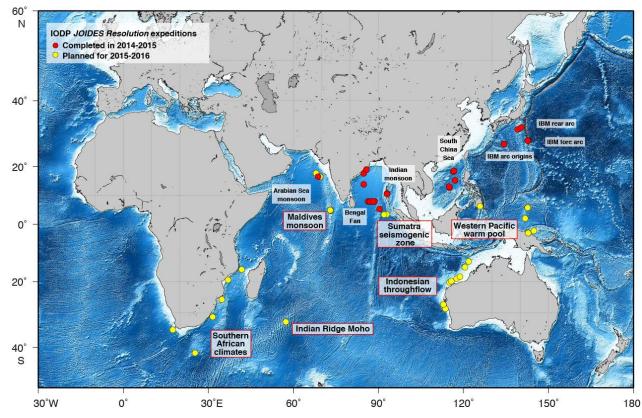
The *JOIDES Resolution* is a 1300m² floating laboratory...



...and a floating university

Major Accomplishments of Scientific Ocean Drilling

- Confirmation of the Seafloor Spreading Hypothesis
- Discovered that the Mediterranean Sea completely dried repeatedly ~5 million years ago
- Recovered direct evidence that a bolide impact caused the mass extinction that killed off the dinosaurs
- Recovered an intact section of the upper oceanic crust
- Recovered first samples of gas hydrates from continental margins
- Discovered that deep ocean waters flow vigorously through the crust (world's largest aquifer)
- Discovered that the deep seafloor hosts abundant microbial life.



JR Facts

- **Owned:** Overseas Drilling Limited, Inc.
- Built 1978 as exploration vessel Sedco/BP 471
- Converted to science research in 1985
- Rebuilt 2009; facility is reliable- breakdown contract rate 0-2% 2009 -2016
- Length: 143 m (471 ft)
- Drill pipe: 5" and 5.5" tapered string
- Drill string capacity: >9 km (~30,000 ft)
- Deepest hole penetration: 2111 m (6924 ft)
- Shallowest water: 35.5 m (123 ft)
- Deepest water: 5980 m (19,614 ft)
- Most core on single cruise: 8003 m (26,250 ft)
- Total core recovered: >230 km (>146 miles)

JOIDES Resolution Recent and Upcoming Expeditions

Richard Farnsworth PhD PMP Senior Program Manager

Battelle/NEON

March 3, 2016

National Ecological Observatory Network

- Battelle was recently selected by the National Science Foundation (NSF) to assume management of the construction and initial operations of the NEON observatory
- Battelle began transition in Mid-March
 - Transitioning key staff to Battelle Ecology Inc.
 - Ensuring smooth transition of permitting, contracts, etc.
 - Continuing construction and Operations
 - Expect to complete transition of Observatory by June 2016

NEON is a continentalscale observation system for examining ecological change over time.

Battelle Mission and Purpose

Our mission: To translate scientific discovery and technology advances into societal benefits

Nonprofit, charitable trust formed in 1925

- Gordon Battelle, Eounder
- Profits reinvested in science & technology and in charitable causes, making the world better for generations to come

Project Sikuliaq

NSF Builds a Ship With Capabilities Like No Other!

Schedule Change Highlights

- Following Final Design Review there were five major areas that could potentially cause Project schedule changes
 - Funding to continue the project Accelerated from FDR because the Project was "shovel ready" when American Recovery and Reinvestment Act of 2009 funding became available, no impact on Project schedule.
 - Shipyard Contract Award Accelerated from FDR because of availability of ARRA funding, no impact on Project schedule.
 - Delivery of Owner Furnished Z-Drives to the Shipyard Accelerated from FDR because of shortened lead time for gear sets, no impact on Project schedule.
 - + Shipyard Execution and Ship Delivery Date
 - + Post-delivery trials

Shipyard Execution and Ship Delivery Date

- + Original contract delivery date 22 January 2013
- + Actual delivery date o6 June 2014
- + Two shipyard contract modifications that contractually extended delivery a total of 197 days:
 - Mod 34 added 185 days due to lengthening of the ship 26 July 2013
 - + Mod 50 added 12 days due to OFE Z-drive issue 07 August 2013
- + Shipyard was 303 days late with delivery of the ship:
 - + Significantly protracted shipyard tests and trials
 - Shipyard paid \$2,250,000 in liquidated damages (maximum allowed by the contract) for late delivery

Change Orders

- + Decided to:
- + Increase length to 6 feet to increase reserve buoyancy
- + Change from Steel to Aluminum structure above o2 deck
- + Eliminate elevator service above o1 deck
- + Other weight savings: light-weight joinery, steel reductions
- + VCG is below the line, including full icing and science loads

Post-Delivery Trials

- + Late delivery and two funded science cruises in late 2014 reduced time for warm water trials and pushed piston coring trials off until 2016.
- + Plan for post-delivery shipyard availability was reduced in scope necessitating a second post-delivery shipyard availability in late 2015:
 - + Timeline for original post-delivery shipyard period was too early
 - + Funded science cruises in the Arctic in summer/fall 2015 didn't allow for extending the post-delivery shipyard period
- + Complexity of the ship required more time for fully testing the systems than originally planned.
- + Replacement A-frame schedule and timeline for discovery of postdelivery issues from trials necessitated second post-delivery shipyard period.

The Greening of R/V Sikuliaq

- + Bottom Coating
- + Waste Incinerator
- + Integrated Power Plant
- + Waste Heat Recovery System
- + Biodegradable Lubricants
- + Double Bottom Hull
- + State of the Art MSD
- + Ballast Water Management System
- + Specialized Hull Configuration and Propulsion

The Greening of R/V Sikuliaq

Shrinking a Ship's Environmental Footprint

THE END

UNIVERSITY OF ALASKA FAIRBANKS

America's Arctic University

The National Science Foundation